DOI QR코드

DOI QR Code

Self-Healing Asphalt Prepared by using Ionic Epoxy Resin

  • Lee, Young-Jik (Department of Polymer Engineering, The University of Suwon) ;
  • Seo, Jun-Young (Department of Polymer Engineering, The University of Suwon) ;
  • Kim, Seo-Yeon (Department of Polymer Engineering, The University of Suwon) ;
  • Lee, Seung-Hyun (Department of Polymer Engineering, The University of Suwon) ;
  • Hong, Young-Keun (Department of Polymer Engineering, The University of Suwon)
  • Received : 2015.07.08
  • Accepted : 2015.08.17
  • Published : 2015.09.30

Abstract

Anionic epoxy compound was synthesized and added to asphalt aiming to prepare self-healing asphalt. Epoxy-modified asphalt showed excellent modification effect and healing effect as well. The results revealed that with 5% addition of polymer the tensile strength, impact strength and complex shear modulus of the polymer-modified asphalt increased by 65%. 64% and 35%, respectively. It seems that high interaction occurs between polymer and asphalt matrix. Self-healing efficiency of the polymer-modified asphalt based on tensile strength showed 100%, comparing to 79% of straight asphalt. In impact experiment the polymer-modified asphalt showed 99% of healing efficiency, comparing to 77% of straight asphalt. In rheological experiment the polymer-modified asphalt showed 103% of healing efficiency, comparing to 72% of straight asphalt. It appears that the ionic bonding existing in epoxy polymers contributed to high values of self-healing efficiency. The polymer which has high intermolecular force fills the crack of the asphalt, pulling the opponent side each other, and so the original properties were restored.

Keywords

References

  1. J. H. Collins and M. G. Bouldin, "Long and Short Term Stability of Straight and Polymer Modified Asphalts", Rubber World, 206, 32 (1992).
  2. Self healing materials concept and application, second edition-version 2013, NL Agency.
  3. P. Wang, S. Lee, and J. P. Harmon, "Ethanol-induced crack healing in poly(methyl methacrylate)", J. Polym. Sci. B, 32, 1217 (1994). https://doi.org/10.1002/polb.1994.090320709
  4. C. B. Lin, S. Lee, and K. S. Liu, "Methanol-Induced crack healing in poly(methyl methacrylate)", Polym. Eng. Sci., 30, 1399 (1990). https://doi.org/10.1002/pen.760302109
  5. J. S. Shen, J. P. Harmon, and S. Lee, "Rubber Chem. Technol., 57(3), 652 (1984). https://doi.org/10.5254/1.3536023
  6. V. C. Li, Y. M. Lim, and Y. W. Chan, "Feasibility study of a passive smart self-healing cementitious composite", Composites Part B, 29, 819 (1998). https://doi.org/10.1016/S1359-8368(98)00034-1
  7. J. Raghavan and R. P. Wool, "Interfaces in repair, recycling, joining and manufacturing of polymers and polymer composites", J. Appl. Polym. Sci., 71, 775 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<775::AID-APP11>3.0.CO;2-I
  8. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic healing of polymer composites", Nature, 409, 794 (2001). https://doi.org/10.1038/35057232
  9. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. J. Moore, and S. R. White, "Self-healing materials with microvascular networks", Nature Mater., 6, 581 (2007). https://doi.org/10.1038/nmat1934
  10. S. H. Cho, H. M. Anderson, S. R. White, N. R. Sottos, and P. V. Braun, "Polydimethylsiloxane-Based Self-Healing Materials", Adv. Mater., 18, 997 (2006). https://doi.org/10.1002/adma.200501814
  11. A. Garcia, M. Bueno, J. N. Contreras, and M. N. Partl, "Induction healing of dense asphalt concrete", Constr. Building Mater., 49, 1 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.105
  12. O. C. Mullins, H. Sabbah, J. Eyssautier, A. E. Pomerantz, L. Barre, A. B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T. Cooper, J. Orbulescu, R. M. Leblanc, J. Edwards, and R. N. Zare, "Advances in Asphaltene Science and the Yen-Mullins Model", Energy Fuels, 26(7), 3986 (2012). https://doi.org/10.1021/ef300185p
  13. W. J. Macknight and R. D. Lundberg, "Elastomeric Ionomers", Rubber Chem. Technol., 57(3), 652 (1984). https://doi.org/10.5254/1.3536023
  14. S. K. Lee, S. H. Jeon, and T. Ree, "Fourier-Transform Infrared Studies of Ionomeric Blend and Ionic Aggregation", Bull. Korean Chem. Soc., 7(4), 267 (1986).
  15. Y. Tan, L. Shan, Y. R. Kim, and B. S. Underwood, "Healing characteristics of asphalt binder", Constr. Build. Mater, 27, 570 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.006