DOI QR코드

DOI QR Code

Thermal Conductivity and Mechanical Properties of Magnesium Oxide Reinforced Polyamide-66 Composites

  • Hwang, Seok-Ho (Department of Polymer Science and Engineering, Dankook University)
  • Received : 2015.08.17
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

Magnesium oxide (MgO) reinforced polyamide-66 (PA66) composites were prepared through melt-compounding method in order to determine the possibility of using MgO particle as conductive filler in the polymer-based composite. The effects of MgO filler content on the thermal conductivity and mechanical properties for the PA66/MgO composites were investigated. The results showed that the addition of MgO filler to the PA66 matrix led to a large increase in thermal conductivity of the PA66/MgO composites. Tensile strengths of the PA66/MgO composites were slightly decreased as MgO filler loading increased. However, flexural strength and flexural modulus were improved with increasing filler loading. Notched Izod impact strengths were dramatically lowered by the addition of MgO filler.

Keywords

References

  1. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells", Nat. Mater., 3, 601 (2004). https://doi.org/10.1038/nmat1198
  2. B. Liu and H. C. Zeng, "Salt-Assisted Deposition of $SnO_2$ on ${\alpha}-MoO_3$ Nanorods and Fabrication of Polycrystalline $SnO_2$ Nanotubes", J. Phys. Chem. B, 108, 5867 (2004). https://doi.org/10.1021/jp037822d
  3. R. S. Yang, and Z. L. Wang, "Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts", J. Am. Chem. Soc., 128, 1466 (2006). https://doi.org/10.1021/ja0578000
  4. D. W. Kim, I. S. Hwang, and S. J. Kwon, "Highly Conductive Coaxial $SnO_2-In_2O_3$ Heterostructured Nanowires for Li Ion Battery Electrodes", Nano Lett., 7, 3041 (2007). https://doi.org/10.1021/nl0715037
  5. K. McCullough, J. Miller, and E. M. Sagal, U.S. Patent 6976769 (2005).
  6. W.-Y. Zhou, S.-H. Qi, H.-Z. Zhao, and N.-L. Liu, "Thermally conductive silicone rubber reinforced with boron nitride particle", Polym. Compos., 28, 23 (2007). https://doi.org/10.1002/pc.20296
  7. P. Giuseppe, K. Ikuko, and M. Sadao, "Thermal conductivity of AlN/polystyrene interpenetrating networks", J. Eur. Ceram. Soc., 20, 1197 (2000). https://doi.org/10.1016/S0955-2219(99)00282-4
  8. H. Ishida and S. Rimdusit, "Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine", Thermochim. Acta, 320, 177 (1998). https://doi.org/10.1016/S0040-6031(98)00463-8
  9. C. K. Leong and D. D. L. Chung, "Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance", Carbon, 41, 2459 (2003). https://doi.org/10.1016/S0008-6223(03)00247-1
  10. K. Sanada, Y. Tada, and Y. Shindo, "Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers", Compos. Part A, 40, 724 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
  11. G. Kalaprasad, P. Pradeep, G. Mathew, C. Pavithran, and S. Thomas, "Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres", Compos. Sci. Technol., 60, 2967 (2000). https://doi.org/10.1016/S0266-3538(00)00162-7
  12. Y. Xu, D. D. L. Chung, and C. Mroz, "Thermally conducting aluminum nitride polymer-matrix composites", Compos. Part A, 32, 1749 (2001). https://doi.org/10.1016/S1359-835X(01)00023-9
  13. L. C. Sim and S. L. Ramanan, "Thermal Characterization of $Al_2O_3$ and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes", Thermochim. Acta, 430, 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  14. R. Ruth and K. Y. Donaldson, "Thermal Conductivity of Boron Carbide-Boron Nitride Composites", J. Am. Ceram. Soc., 75, 2887 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05525.x
  15. R. J. Samuels and N. E. Mathis, "Orientation Specific Thermal Properties of Polyimide Film", J. Electron. Packag., 123, 273 (2001). https://doi.org/10.1115/1.1347986
  16. A. Devpura and P. E. Phelan, "Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology", In: Proceedings of the Inter Society Conference on Thermal Phenomena, Las Vegas, NV, USA, May 23-26, pp. 21-28 (2000).
  17. S. H. Xie, B. K. Zhu, and J. B. Li, "Preparation and Properties of Polyimide/Aluminum Nitride Composites", Polym. Test., 23, 797 (2004). https://doi.org/10.1016/j.polymertesting.2004.03.005
  18. Y. Agari and A. Ueda, "Thermal Conductivities of Composites in Several Types of Dispersion System", J. Appl. Polym. Sci., 65, 2732 (1997).
  19. A. Slocombe and L. Li, "Laser Ablation Machining of Metal/Polymer Composite Materials", Appl. Surf. Sci., 154-155, 617 (2000). https://doi.org/10.1016/S0169-4332(99)00391-8
  20. Z. Q. Tao, S. Y. Yang, J. S. Chen, and L. Fan, "Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins", Eur. Polym. J., 43, 1470 (2007). https://doi.org/10.1016/j.eurpolymj.2007.01.039
  21. P. Dashora and G. Gupta, "On the temperature dependence of the thermal conductivity of linear amorphous polymers", Polymer, 37, 231 (1996). https://doi.org/10.1016/0032-3861(96)81092-5
  22. W. H. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, "Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation", Polym. Eng. Sci., 39, 756 (1999). https://doi.org/10.1002/pen.11464
  23. W. N. Santos, P. Mummery, and A. Wallwork, "Thermal Diffusivity of Polymers by the Laser Flash Technique", Polym. Test., 24, 628 (2005). https://doi.org/10.1016/j.polymertesting.2005.03.007
  24. S. Zheng, J. Wang, Q. Guo, J. Wei, and J. Li, "Miscibility, Morphology and Fracture-Toughness of Epoxy-Resin Poly(Styrene-co-Acrylonitrile) Blends", Polymer, 37, 4667 (1996). https://doi.org/10.1016/S0032-3861(96)00324-2