DOI QR코드

DOI QR Code

Kinetics and Catalytic Activity of Carbon-Nickel Nanocomposites in the Reduction of 4-Nitrophenol

  • Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2015.08.25
  • Accepted : 2015.09.10
  • Published : 2015.09.30

Abstract

Carbon-nickel nanocomposites were prepared by the reaction of fullerene ($C_{60}$) and nickel hydroxide in an electric furnace at $700^{\circ}C$ for 2 h. The hybrid carbon-nickel nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The kinetics and catalytic activity of the carbon-nickel nanocomposites in the reduction of 4-nitrophenol were confirmed by UV-vis spectroscopy.

Keywords

References

  1. D. Astruc, F. Lu, and J. R. Aranzaes, "Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis", Angew. Chem. Int. Ed., 44, 7852 (2005). https://doi.org/10.1002/anie.200500766
  2. T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A. Eroglu, T. Scott, and K. Hallam, "Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes", Chem. Eng. J., 172, 258 (2011). https://doi.org/10.1016/j.cej.2011.05.103
  3. J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, "$CuFe_2O_4$ magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol", Chem. Eng. J., 221, 16 (2013). https://doi.org/10.1016/j.cej.2013.02.009
  4. H. B. Chu, L. Wei, R. L. Cui, J. Y. Wang, and Y. Li, "Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications", Coord. Chem. Rev., 254, 1117 (2010). https://doi.org/10.1016/j.ccr.2010.02.009
  5. R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, and B. Chan, "Radial deformation of carbon nanotubes by van der Waals forces", Nature, 364, 514 (1993). https://doi.org/10.1038/364514a0
  6. D. Nunes, M. Vilarigues, J. B. Correia, and P. A. Carvalho, "Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms", Acta Mater., 60, 737 (2012). https://doi.org/10.1016/j.actamat.2011.10.012
  7. B. Ghosh, H. Dutta, and S. K. Pradhan, "Microstructure characterization of nanocrystalline $Ni_3C$ synthesized by highenergy ball milling", J. Alloy Compd., 479, 193 (2009). https://doi.org/10.1016/j.jallcom.2008.12.133
  8. M. Bystrzejewski, Z. Karoly, J. Szepvolgyi, W. Kaszuward, A. Huczko, and H. Lange, "Continuous synthesis of carbonencapsulated magnetic nanoparticles with a minimum production of amorphous carbon", Carbon, 47, 2040 (2009). https://doi.org/10.1016/j.carbon.2009.03.054
  9. G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, and K. Nielsch, J. Choi, P. Goring, U. Gosele, P. Miclea, and R. B. Wehrspohn, "Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays", Appl. Phys. Lett., 88, 023106 (2006). https://doi.org/10.1063/1.2162682
  10. B. Bokhonov and M. Korchagin, "The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel", J. Alloy Compd., 333, 308 (2002). https://doi.org/10.1016/S0925-8388(01)01741-8
  11. B. J. Borah and P. Bharali, "Surfactant-free synthesis of CuNi nanocrystals and their application for catalytic reduction of 4-nitrophenol", J. Mol. Catal. A: Chem., 390, 29 (2014).
  12. Y. Du, H. L. Chen, R. Z. Chen, and N. P. Xu, "Synthesis of paminophenol from p-nitrophenol over nano-sized nickel catalysts", Appl. Catal. A: Gen., 277, 259 (2004). https://doi.org/10.1016/j.apcata.2004.09.018
  13. J. F. Corbett, "An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes", Dyes Pigments, 41, 127 (1999). https://doi.org/10.1016/S0143-7208(98)00075-8
  14. N. Pradhan, A. Pal, and T. Pal, "Silver nanoparticle catalyzed reduction of aromatic nitro compounds", Colloids and Surfaces A: Physicochem. Eng. Aspects, 196, 247 (2002). https://doi.org/10.1016/S0927-7757(01)01040-8
  15. S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, "Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes", J. Phys. Chem. C, 114, 8814 (2010). https://doi.org/10.1021/jp101125j
  16. J. H. Lee, S. K. Hong, and W. B. Ko, "Synthesis of cuprous oxide using sodium borohydride under microwave irradiation and catalytic effects", J. Ind. Eng. Chem., 16, 564 (2010). https://doi.org/10.1016/j.jiec.2010.03.019
  17. J. H. Lee, S. K. Hong, J. M. Kim, and W. B. Ko, "Synthesis of Gold Nanoparticles Using $Pluronic^{(R)}$ F127NF Under Microwave Irradiation and Catalytic Effects", J. Nanosci. Nanotechnol., 11, 734 (2011). https://doi.org/10.1166/jnn.2011.3212
  18. N. Sahiner, H. Ozay, O. Ozay, and N. Aktas, "New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols", Appl. Catal. A: Gen., 385, 201 (2010). https://doi.org/10.1016/j.apcata.2010.07.004
  19. J. Z. Gao, F. Guan, Y. C. Zhao, W. Yang, Y. J. Ma, X. Q. Lu, J. G. Hou, and J. W. Kang, "Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity", Mater. Chem. Phys., 71, 215 (2001). https://doi.org/10.1016/S0254-0584(01)00275-9
  20. W. Xu, J. S. Kong, and P. Chen, "Single-Molecule Kinetic Theory of Heterogeneous and Enzyme Catalysis", J. Phys. Chem. C, 113, 2393 (2009). https://doi.org/10.1021/jp808240c
  21. A. Righi, P. Venezuela, H. Chacham, S. D. Costa, C. Fantini, R. S. Ruoff, L. Colombo, W. S. Bacsa, and M. A. Pimenta, "Resonance Raman spectroscopy in twisted bilayer graphene", Solid State Commun., 175-176, 13 (2013). https://doi.org/10.1016/j.ssc.2013.05.015
  22. Y. Mei, G. Sharma, and Y. Lu, M. Ballauff, "High Catalytic Activity of Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes", Langmuir, 21, 12229 (2005). https://doi.org/10.1021/la052120w
  23. F. Taghavi, C. Falamaki, A. Shabanov, L. Bayrami, and A. Roumianfar, "Kinetic study of the hydrogenation of p-nitrophenol to p-aminophenol over micro-aggregates of nano-$Ni_2B$ catalyst particles", Appl. Catal. A : Gen., 407, 173 (2011). https://doi.org/10.1016/j.apcata.2011.08.036

Cited by

  1. Highly catalytic activity of nickel nanoparticles generated in poly(methylmethacrylate)@poly(2-hydroxyethylmethacrylate) (PMMA@PHEMA) core–shell micelles for the reduction of 4-nitrophenol (4-NP) vol.8, pp.3, 2018, https://doi.org/10.1007/s13204-018-0669-0