DOI QR코드

DOI QR Code

Antimicrobial Activity and Mechanism of Polyvinyl Chloride Composite Containing Inorganic Bacteriocide

  • Park, Se-Ho (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Lee, Jae-Yeul (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Choi, Ju-Hwan (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Park, Tae-Hee (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Moon, Sung-Bae (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Lee, Hyeongsu (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Bang, Daesuk (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology) ;
  • Yang, Seun-Ah (Faculty of Food Science and Public Health, Keimyung University) ;
  • Jhee, Kwang-Hwan (School of Science and Engineering of Chemical Materials, Kumoh National Institute of Technology)
  • Received : 2015.08.28
  • Accepted : 2015.09.08
  • Published : 2015.09.30

Abstract

Bacterial infection is one of the most common and universal cause of disease spreading associated with medical and surgical environment. Antimicrobial function of plasticized polyvinyl chloride (PVC) will be useful for making hygienic environments. Here, we synthesized the PVC composite by the addition of inorganic bacteriocide containing silver, zinc and zeolite. And we investigated the growth inhibition rate for Staphylococcus aureus and Klebsiella pneumoniae which were analyzed in the presence of PVC composite with different doses of inorganic bacteriocide (1~15 wt%). Bacterial proliferation was significantly inhibited by 3 wt% of inorganic bacteriocide containing PVC composite. And we found the inhibition of bacterial biofilm formation by 5 wt% of inorganic bacteriocide containing PVC composite by the observation of scanning electron microscopy (SEM). Our data suggested that the antimicrobial effect of inorganic bacteriocide was caused by disturbing the bacterial biofilm formation.

Keywords

References

  1. A. Henglein and M. Giersig, "Formation of colloidal nanoparticles: capping action of citrate", J. Phys. Chem. B, 103, 9533 (1999). https://doi.org/10.1021/jp9925334
  2. V. Swarup, J. Ghosh, S. Ghosh, A. Saxena, and A. Basu, "Antiviral and anti-inflammatory of rosmarinic acid in an experimental murine model of Japanese encephalitis", Antimicrob. Agents Chemother., 51, 3367 (2007). https://doi.org/10.1128/AAC.00041-07
  3. C. Marambio-Jones and E. M. V. Hoek, "A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment", J. Nanopart. Res., 12, 1531 (2010). https://doi.org/10.1007/s11051-010-9900-y
  4. J. Husheng, H. Wensheng, W. Liqiao, X. Bingshe, and L. Xuguang, "The structures and antibacterial properties of nano-$SiO_2$ supported silver/zinc-silver materials", Dent. Mater., 24, 244 (2008). https://doi.org/10.1016/j.dental.2007.04.015
  5. M. Rai, A. Yadav, and A. Gade, "Silver nanoparticles as a new generation of antimicrobials", Biotechnol. Adv., 27, 76 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002
  6. D. R. Monterio, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. de Camarogo, and D. B. Barbosa, "The growing importance of materials that prevent microbial adhension: antimicrobial effect of medical devices containing silver", Int. J. Antimicrob. Agents., 34, 103 (2009). https://doi.org/10.1016/j.ijantimicag.2009.01.017
  7. P. Spacciapoli, D. Buxton, D. Rothstein, and P. Friden, "Antimicrobial activity of silver nitrate against periodontal pathogens", J. Periodont. Res., 36, 108 (2001). https://doi.org/10.1034/j.1600-0765.2001.360207.x
  8. I. S. Hwang, J. Cho, J. H. Hwang, B. Hwang, H. Choi, J. Lee, and D. G. Lee, "Antimicrobial effects and mechanism(s) of silver nanoparticle", Korean J. Microbiol. Biotechnol., 39, 1 (2011).
  9. J. H. Lee, H. J. Seo, T. W. Son, and H. S. Lim, "Preparation and properties of antimicrobial zinc alginate films according to solution concentration", Polym. Korea, 37, 677 (2013). https://doi.org/10.7317/pk.2013.37.6.677
  10. Z. X. Xin, Z. X. Zhang, K. Pal, J. U. Byeon, S. H. Lee, and J. K. Kim, "Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend", Mater. Des., 31, 589 (2010). https://doi.org/10.1016/j.matdes.2009.07.002
  11. D. Zampono, T. Ferreri, C. Puglisi, M. Mancuso, R. Zaccone, R. Scaffaro, and D. Bennardo, "PVC silver zeolite composites with antimicrobial properties", J. Mater. Sci., 46, 6734 (2011). https://doi.org/10.1007/s10853-011-5629-y
  12. J. Ji and W. Zhang, "Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds", J. Biomed. Mater. Res. Part A, 88, 448 (2008).
  13. O. Akhavan and E. Ghaderi, "Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner", Carbon, 50, 1853 (2012). https://doi.org/10.1016/j.carbon.2011.12.035
  14. O. Akhavan and E. Ghaderi, "Toxicity of graphene and graphene oxide nanowalls against bacteria", ACS Nano, 4, 5731 (2010). https://doi.org/10.1021/nn101390x
  15. T. Mondal, A. K. Bhowmick, and R. Krishnamoorti, "Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization", J. Mater. Chem., 22, 22481 (2012). https://doi.org/10.1039/c2jm33398h
  16. O. Akhavan, R. Azimirad, S. Safa, and E. Hasani, "$CuO/Cu(OH)_2$ hierarchical nanostructures as bactericidal photocatalysts", J. Mater. Chem., 21, 9634 (2011). https://doi.org/10.1039/c0jm04364h
  17. J. Vartiainen, M. Ratto, and S. Paulussen, "Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films", Packag. Technol. Sci., 18, 243 (2005). https://doi.org/10.1002/pts.695
  18. P. Daewon, W. Jun, and A. M. Klibanov, "One-step, paintinglike coating procedures to make surfaces highly and permanently bactericidal", Biotechnol. Prog., 22, 584 (2006). https://doi.org/10.1021/bp0503383
  19. B. Galeano, E. Korff, and W. L. Nicholson, "Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation", Appl. Environ. Microbiol., 69, 4329 (2003). https://doi.org/10.1128/AEM.69.7.4329-4331.2003
  20. M. M. Cowan, K. Z. Abshire, S. L. Houk, and S. M. Evans, "Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel", J. Ind. Microbiol. Biotechnol., 30, 102 (2003). https://doi.org/10.1007/s10295-002-0022-0
  21. G. Seyfriendsberger, K. Rametsteiner, and W. Kern, "Polyethylene compounds with antimicrobial surface properties", Eur. Polym. J., 42, 3383 (2006). https://doi.org/10.1016/j.eurpolymj.2006.07.026
  22. T. F. C. Mah and G. A. Toole, "Mechanisms of biofilm resistance to antimicrobial agents", Trends Microbiol., 9, 34 (2001). https://doi.org/10.1016/S0966-842X(00)01913-2
  23. D. Davies, "Understanding biofilm resistance to antimicrobial agents", Nat. Rev. Drug Discov., 2, 114 (2003). https://doi.org/10.1038/nrd1008
  24. G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin, "Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress", Small, 8, 3326 (2012). https://doi.org/10.1002/smll.201200772