8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information

BYAMBASUREN SODGEREL, Yong-Ki Kim, Mi-Hye Kim
Dept. of Computer Engineering, Chungbuk National University

Abstract In this paper, we proposed the straight line determination method and the algorithm for 8 directions determination of straight line using the coordinate information and the property of trigonometric function. We conduct an experiment that is 8 hand gestures are carried out 100 times each, a total of 800 times. And the accuracy for the 8 direction determination algorithm is showed the diagonal direction to the left upper side shows the highest accuracy as 92%, and the direction to the left side, the diagonal direction to the right upper side and the diagonal direction to the right bottom side show the lowest accuracy as 82%. This method with coordinate information through image processing than the existing recognizer and the recognition through learning process is possible using a hand gesture recognition gesture.

Key Words : hand gesture recognition, hand tracking, HCI, image processing, pattern recognition

1. INTRODUCTION

Many technologies are being researched which enable Human–Computer Interaction (HCI) in more convenient way amid rapid advancement of computer capabilities. Recently, the input modalities have
expanded to include the touch, voice, gesture, etc., although the mouse (developed in 1960s) and keyboard which appeared later were used widely to give command to the computers thus far. In addition, various researches have been conducted on many different forms of user interface (UI) for the natural Human–Computer Interaction (HCI). Particularly, the motion recognition technology has been incorporated into the games such as the Natal of Microsoft, and the services which use the smart home environment or IPTV, as well as the games, are creating an increasing proportion of new value, and resultantly, researches have been conducted vigorously on the gesture recognition technology that enable more positive interaction with human, not the existing remote controllers.[1,2] Thus, there has been an increasing desire for Human–Computer Interaction (HCI), and in particular, the experiential interface, such as touch screen, haptic UI, etc., has drawn a growing interest, rather than the existing interface such as keyboard, mouse, joystick, etc.[3] Beside, the researches have been carried out vigorously in the field of gesture recognition which uses the advanced computer hardware and various sensors that have been developed to satisfy the desire of users for Human–Computer Interaction (HCI).[4].

2. RELATED WORKS

In the relevant studies regarding the recognition of gestures, the method of analyzing and recognizing the directional structure of hand gestures, dividing it by 45° using the movement direction vector of two points in two frames and classifying 4 directions for the gesture including left, right, up and down directions is suggested in [5]. In [6], the moving trajectory of all gestures is normalized to have 8-directionality by applying the syntactic recognition method. The normalization process finds the angle of movement vector in the hand region formed between 2 sequential frames using the trigonometric function. The method of normalizing in the closest among 8 directions from the obtained angle is studied. In [7], accumulated distance value of hand movements, accumulated angle value in the moving distance and the angle of gesture starting point and end point are obtained and feature points are calculated using the status diagram, and then these points are entered to the Support Vector Machine (SVM) to recognize gestures in 8 directions, left turn and right turn gestures. In [8], parameter is detected using the central coordinates from the image input through the kinect sensor and 6 types of gestures including left, right, up, down, left turn and right turn were recognized using HMM (Hidden markov model) from the obtained parameter. In [9], 8 types of gesture with both hands were recognized using the standards of vector quantization and similarity.

Algorithms used for the gesture recognition include Neural Networks and HMM (Hidden Markov Models). Neural Networks can recognize poses and gestures and obtain a high accuracy by enough learning but network learning takes a long time and a good result cannot be guaranteed in comparison to the time required. HMM (Hidden Markov Models) provides a good solution for the hand gesture and pose recognition but a good result cannot be guaranteed in comparison to the time required just as Neural Networks and it is difficult to understand the actions inside of HMM unlike the multi-level Neural Networks [10]. And also, the recognition method with angular chain code is frequently suggested among the gesture recognition methods and the recognition method of 8 directions. This method provides simple and easy recognition but only the starting point and the end point are used so that it has some disadvantages that it cannot recognize a changing value and it is sensitive to noise in the boundary value[11,12].

This study is intended to present the coordinate information–based linear & directional recognition
algorithm which involves the recognition of skin color based on the data fed from the camera alone without using special equipment and subsequent extraction of hand central point through the color space transformation (conversion) and binarization and the input of hand’s various movements depending on the change in the position of the central point.

3. HAND GESTURE RECOGNITION ALGORITHM USING COORDINATE INFORMATION

The algorithm proposed in this study is the linear 8 directional hand motion recognition method using the difference in the 'distance between the starting point and the ending point' and the 'distance between the starting point and middle point' of coordinates based on the coordinate information of the input data.

First, the hand central point is extracted. The process of extraction is as follows:

The color space of the image input is converted into the YCbCr color space and the hand region is extracted and binary-coded is that \(B(x, y) = 1 \), if \([C_r(x, y) \in [133,173]] \cap [C_b(x, y) \in [177,127]] \) and otherwise \(B(x, y) = 0 \) [13].

To improve the reliability of the extracted area, the morphology calculation is conducted [14]. The algorithm suggested in this paper uses the coordinate information, so it finds the central point in the hand region extracted for recognizing the hand gesture and recognizes the gesture with the central point (1)

\[
C(x, y) = \frac{\sum_{i=0}^{N} P_i(x, y)}{N}
\]

(1)

Where, \(C(x, y) \) is the central point on the extracted region, \(P_i(x, y) \) is the pixel coordinate of the extracted region, and \(N \) is the number of total pixels in the extracted region.

After the central point of the hand is extracted, the coordinates that connect the central point of the hand are traced to recognize the gesture. [Fig. 1] shows the screen where the gesture is entered, and [Fig. 2] is the plot of traced coordinates.

[Fig. 1] Gesture Input Screen

[Fig. 2] Straight Line Tracking

In order to improve the accuracy in the hand movement recognition, the coordinates including the maximum and minimum information from the \(x_i \) values for all \(i \) are eliminated in consideration of the environment noises from the coordinates \((x_i, y_i)\) entered based on the path of coordinates that trace the central point of the hand, and similarly, the coordinates that have the maximum and minimum values for \(y_i \) are removed. Generally, a total of 4 coordinates from the entered coordinate data can be eliminated in such case.

Also used here is the difference in the "distance \(d_{on} \)" which is the amount of space between the starting...
\[P_0(X_0, Y_0) \text{ and the ending point } P_n(X_n, Y_n) \text{ of the input coordinates and the "distance } d_{0m} \text{" between the starting point and the middle point in order to determine whether the path of the coordinates that tracked the hand motion is linear.} \]

Here, \(d_{0m} \) means the distance on the general Euclid plane.

And also, the central coordinates from the \(n \) number of coordinates entered are expressed as \(P_m = P(x_m, y_m) \). If the number of coordinates entered is an odd number, the \(\frac{n+1}{2} \)-th coordinate is the central point, and the if the number of the coordinates entered is an even number, the \(\frac{n}{2}+1 \)-th coordinates is the central point. For example, if the number of coordinates entered is 9, the 5th coordinate is the central point, and if the number of coordinates entered is 10, the 6th coordinate is the central point.

In the case of linear open curve as shown in [Fig. 3], the distance \(d_{0m} \) between the starting point and the ending point is generally larger than the distance \(d_{0m} \) between the starting point and the middle point. In other words, \(d_{im} > d_{0m} \) constitutes.

\[P_0(X_0, Y_0) \]

\[P_n \]

\[d_{0m} \]

\[d_{0n} \]

In the same way, the values for the \(y \) coordinates can be expressed similar to formular (2), (3) respectively.

Using the formula (2), the length for the variation on each \(x \) coordinate can be assumed as follows (4),(5):

\[\Delta x_{0m} = |x_0 - x_{\text{min}}| \]
\[\Delta x_{0M} = |x_0 - x_{\text{max}}| \]

In the same way, the values for the \(y \) coordinates can be expressed similar to formular (2), (3) respectively.

Considering that the coordinates for the center of hand moved are \(P_1(X_1, Y_1) \), \(x_0 \) and \(y_0 \) which become the standard for recognizing the directionality of the linear hand gesture mean the initial values at \(P_0 = P(X_0, Y_0) \), the coordinates entered first by the sequence of input time.

Assuming that \(x_{\text{min}} \) is the smallest value among the coordinates of the \(x \) input coordinate values and that the largest value is \(x_{\text{max}} \) it can be expressed using the formula (2) and (3).

\[x_{\text{min}} = \bigwedge_{i=0}^{n-1} |x_i| \]
\[x_{\text{max}} = \bigvee_{i=0}^{n-1} |x_i| \]

Formula(4) means the smallest variation towards the \(x \) axis at the starting point of \(x \) coordinate, while formula(5) means the largest variation. In the same way, the maximum and minimum values of the variation for the \(y \) axis and each variation as shown in [Fig. 4]
This paper presents the linear & directional hand motion recognition algorithm using the coordinate information as follows:

1st step: Enter the hand motion coordinate data, i.e., \(P_0(x_0, y_0), P_1(x_1, y_1), \ldots, P_n(x_n, y_n) \).

2nd step: Determine the leftward and rightward direction based on the difference in the variation on axis. In other words, the linear hand motion is made leftward if \(\Delta x_{0n} > \Delta x_{0M} \). The linear hand motion is made rightward if \(\Delta x_{0n} < \Delta x_{0M} \). The linear hand motion is made vertically if \(\Delta x_{0n} = \Delta x_{0M} \).

\[
\begin{align*}
L, & \quad \text{if } \Delta x_{0n} - \Delta x_{0M} > 0 \\
R, & \quad \text{if } \Delta x_{0n} - \Delta x_{0M} < 0 \\
U\text{ or } D, & \quad \text{if } \Delta x_{0n} - \Delta x_{0M} = 0
\end{align*}
\]

(6)

3rd step: Determine the upward and downward direction based on the difference in the variation on axis. In other words, the linear hand motion is made upward if \(\Delta y_{0n} \geq \Delta y_{0M} \). The linear hand motion is made downward if \(\Delta y_{0n} < \Delta y_{0M} \).

This can be expressed in a formula as follows.

\[
\begin{align*}
U, & \quad \text{if } \Delta y_{0n} - \Delta y_{0M} \geq 0 \\
D, & \quad \text{if } \Delta y_{0n} - \Delta y_{0M} < 0
\end{align*}
\]

(7)

4th step: After determining the left, right, up and down directions of the hand gesture using Formulas (6) and (7), the threshold value by the proportional formula of trigonometric function can be obtained from the following formula.

Determine the diagonal direction using the proportional expression of trigonometric function.

\[
\frac{(\Delta x_{0n}, \Delta x_{0M}, \Delta y_{0n}, \Delta y_{0M})}{\sqrt{2} - \sqrt{2}}
\]

(8)

Here, the reason to use the threshold value drawn from the formula above is as follows. In [Fig. 5], the hand should be in the range between 0° and 22.5° in order to recognize the L direction, the hand should be in the range between 22.5° and 67.5° in order to recognize the LU direction, and the hand should be in the range between 67.5° and 90° in order to recognize the U direction.
좌표 정보를 이용한 손동작 직선 8 방향 인식 알고리즘

\[
\begin{align*}
L, & \quad \text{if } (\Delta x_{0m} > \frac{\Delta y_{0m}/\sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}}) \\
LU, & \quad \text{if } (\Delta x_{0m} \leq \frac{\Delta y_{0m} \sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}}) \quad \text{AND} \\
& \quad \Delta y_{0m} \leq \frac{\Delta x_{0m} \sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}} \\
U, & \quad \text{if } (\Delta y_{0m} > \frac{\Delta x_{0m} \sqrt{2} - \sqrt{2}}{\sqrt{2} + \sqrt{2}})
\end{align*}
\] \tag{9}

We can find LD, RU and RD Similar to formula (9)

4. EXPERIMENTAL RESULT

This paper is prepared using the OpenCV 2.2 library based on Microsoft Visual Studio 10.0 as shown in <Table 1>. And, the resolution of the camera used to receive the data input for the experiment is 320 x 240.

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool</td>
<td>Microsoft Visual Studio 10.0</td>
</tr>
<tr>
<td>Library</td>
<td>OpenCV 2.2</td>
</tr>
<tr>
<td>camera resolution</td>
<td>320x240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined hand gestures</td>
</tr>
<tr>
<td>Number of tests</td>
</tr>
<tr>
<td>8 directions of standard straight line</td>
</tr>
<tr>
<td>A total 800 times including 100 times for each direction</td>
</tr>
<tr>
<td>8 directions of modified straight line</td>
</tr>
<tr>
<td>A total 800 times including 100 times for each direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Table 3) 8-direction recognition test result of standard straight line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition rate</td>
</tr>
<tr>
<td>Mis-recognition rate</td>
</tr>
</tbody>
</table>

According to <Table 3>, (RD) gesture to the right bottom side shows a satisfactory result as 100% but (D) gesture to the bottom side shows the recognition rate of 90% as the hand gesture test result in 8-directions of standard straight line. This shows that the moving speed or direction may vary depending on the user. The hand gesture recognition test result in 8 directions of standard straight line can be expressed on a drawing as [Fig. 8].

According to <Table 3>, (RD) gesture to the right bottom side shows a satisfactory result as 100% but (D) gesture to the bottom side shows the recognition rate of 90% as the hand gesture test result in 8-directions of standard straight line. This shows that the moving speed or direction may vary depending on the user. The hand gesture recognition test result in 8 directions of standard straight line can be expressed on a drawing as [Fig. 8].

In general, when a person makes a linear hand gesture, he/she makes a modified hand gesture in 8 directions of standard straight line presented in 4.1 as well as in various forms. Therefore, 8 types of modified straight line are defined in this paper as shown in <Table 4> and the test is carried. In <Table 4>, the same determination with the test subject’s intention to enter data is considered as the recognition rate.
8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information

5. CONCLUSIONS

For the hand gesture recognition algorithm in this paper, the algorithm to recognize the 8-direction of straight line using the coordinate information is suggested to recognize the image coordinate data input from the camera without the use of a specific device.

Among the previous direction recognition methods, the method of using angular chain code has some disadvantages that it cannot recognize a changing value and it is sensitive to noise. In this paper, the linear and circular hand gesture recognition algorithm which can remove extreme points from coordinate input values as the method to minimize this noise to improve accuracy is suggested.

The algorithm presented in this paper distinguishes between a straight line and a curve using the difference between the distance between the starting point and the end point and the distance between the starting point and the midpoint from the input data coordinates.

And also, the algorithm for 8 directions of straight line using the coordinate information and the property of trigonometric function is suggested to determine 8 directions of straight line in case of a straight line.

It is expected that this hand gesture recognition algorithm will be developed into the base technology that enables human-computer interaction through various types of user interfaces for more natural interaction with the computer. The human-computer interaction methods include the method of using voice, body or hand gestures and human face. The gesture-based user interface has many advantages in the aspect that it can enable the interaction in intuitive and various forms. Therefore, more services that use the smart home environment or IPTV create new values so that the studies on the gesture recognition technology which enables the active human–computer interaction, not the previous remote control, are expected to be carried out actively.

<Table 4> Hand gesture recognition test result in 8 directions of modified straight line

<table>
<thead>
<tr>
<th>Modified Straight Line</th>
<th>Recognition rate</th>
<th>Mis-recognition rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>82%</td>
<td>18%</td>
</tr>
</tbody>
</table>

In this test, 8 hand gestures are carried out 100 times each, a total of 800 times, and for the accuracy through the algorithm suggested in this paper, the diagonal direction to the left upper side shows the highest accuracy as 92%, and the direction to the left side, the diagonal direction to the right upper side and the diagonal direction to the right bottom side show the lowest accuracy as 82%. The contents in <Table 4> can be expressed on a graph as [Fig. 9].

[Fig. 9] Hand gesture recognition rate in 8 direction of modified straight line
ACKNOWLEDGMENTS

This work was supported by the research grant of the Chungbuk National University in 2013.

REFERENCES

[15] Dong-Seok Lee, Su-Dong Kim, Dong-Wook Lee, Ji-Sang Yoo, “3D world space recognition system using stereo camera”, Fall Conference of Korean Society of Broadcast Engineers
쓰드게를(Byambasuren Sodgerel)

- 2009년 2월 : 울란바트르대학 전기전자공학과 (공학사)
- 2013년 2월 : 충북대학교 컴퓨터공학과 (공학석사)
- 관심분야 : 손동작 인식
- E-Mail : sodoo_0922@nate.com

김 용 기(Kim, Yong Ki)

- 2008년 2월 : 창주대학교 관광경영학과 학사
- 2014년 2월 : 충북대학교 컴퓨터공학과 (공학석사)
- 2014년 3월 ~ 현재 : 충북대학교 컴퓨터공학과 박사과정
- 관심분야 : 동작인식, 음성인식
- E-Mail : mooddeath.kyk@gmail.com

김 미 혜(Kim, Mi Hye)

- 1994년 2월 : 충북대학교 수학과 (이학사)
- 1992년 2월 : 충북대학교 대학원 수학과 (이학석사)
- 2001년 2월 : 충북대학교 대학원 수학과 (이학박사)
- 2004년 ~ 현재 : 충북대학교 컴퓨터공학과 교수
- 관심분야 : 동작인식, 기능성게임, 퍼지이론
- E-Mail : mhkim@cbnu.ac.kr