DOI QR코드

DOI QR Code

CONSTRAINTS ON PRE-INFLATION COSMOLOGY AND DARK FLOW

  • MATHEWS, GRANT J. (University of Notre Dame, Center for Astrophysics) ;
  • LAN, N.Q. (University of Notre Dame, Center for Astrophysics) ;
  • KAJINO, T. (National Astronomical Observatory of Japan)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

If the present universe is slightly open then pre-inflation curvature would appear as a cosmic dark-flow component of the CMB dipole moment. We summarize current cosmological constraints on this cosmic dark flow and analyze the possible constraints on parameters characterizing the pre-inflating universe in an inflation model with a present-day very slightly open ${\Lambda}CDM$ cosmology. We employ an analytic model to show that for a broad class of inflation-generating effective potentials, the simple requirement that the observed dipole moment represents the pre-inflation curvature as it enters the horizon allows one to set upper and lower limits on the magnitude and wavelength scale of pre-inflation fluctuations in the inflaton field and the curvature parameter of the pre-inflation universe, as a function of the fraction of the total initial energy density in the inflaton field. We estimate that if the current CMB dipole is a universal dark flow (or if it is near the upper limit set by the Planck Collaboration) then the present constraints on ${\Lambda}CDM$ cosmological parameters imply rather small curvature ${\Omega}_k{\sim}0.1$ for the pre-inflating universe for a broad range of the fraction of the total energy in the inflaton field at the onset of inflation. Such small pre-inflation curvature might be indicative of open-inflation models in which there are two epochs of inflation.

Keywords

References

  1. Atrio-Barandela, F., 2013, On the Statistical Significance of the Bulk Flow Measured by the Planck Satellite, A&A, 557A, 116A
  2. Fixen, D. J., 2009, The Temperature of the Cosmic Microwave Background, ApJ, 707, 916 https://doi.org/10.1088/0004-637X/707/2/916
  3. Grischuk, L. & Zel'dovich, Y. B. 1978, Long-wavelength Perturbations of a Friedmann Universe, and Anisotropy of the Microwave Background Radiation, SvA, 22, 125
  4. Hinshaw, G., et al., (WMAP Collaboration), 2013, ApJ, 208, 19 https://doi.org/10.1088/0067-0049/208/2/19
  5. Kashlinsky, A., Atrio-Barandela, F., Ebeling, H., Edge, A., & Kocevski, D., 2010, A New Measurement of the Bulk Flow of X-Ray Luminous Clusters of Galaxies, ApJ, 712, L81 https://doi.org/10.1088/2041-8205/712/1/L81
  6. Kashlinsky, A., Atrio-Barandela, F., & Ebeling, H., 2011, Measuring the Dark Flow with Public X-ray Cluster Data, ApJ, 732, 1 https://doi.org/10.1088/0004-637X/732/1/1
  7. Kashlinsky, A., Atrio-Barandela, F., & Ebeling, H., 2012, Measuring Bulk Motion of X-ray Clusters Via the Kine-matic Sunyaev-Zeldovich Effect: Summarizing the "Dark Flow" Evidence and its Implications, PhRv, arXiv, 1202, 0717
  8. Kashlinsky, A., Tkachev, I. I., & Frieman, J., 1994, Microwave Background Anisotropy in low-0 Inflationary Models and the Scale of Homogeneity in the Universe, PhRvL, 73, 1582
  9. Kogut, A., et al., 1993, Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps, ApJ, 419, 1 https://doi.org/10.1086/173453
  10. Kurki-Suonio, H., Graziani, F., & Mathews, G. J., 1991, Prospects for Observing Subhorizon Preinflation Fluctuations in the Cosmic Microwave Background, PhRvD, D44, 3072
  11. Langlois, D. & Piran, T., 1996, Cosmic Microwave Back-ground Dipole From an Entropy Gradient, PhRvD, 53(6), 2908
  12. Liddle, A. R. & Lyth, D. H., 2000, Cosmological Inflation and Large Scale Structure, Cambridge University Press, Cambridge, UK
  13. Lynden-Bell, D., et al., 1988, Spectroscopy and Photometry of Elliptical Galaxies. V - Galaxy Streaming Toward the New Supergalactic Center, ApJ, 326, 19 https://doi.org/10.1086/166066
  14. Mathews, G. J., Lan, N. Q., & Kajino. T., 2014, Constraints on Pre-inflation Fluctuations in a Nearly Flat Open $\Lambda$CDM Cosmology, arXiv, 1406, 3409M
  15. Mathews, G. J., Rose, B., Garnavich, P., Yamazaki, D., & Kajino. T., 2014, arXiv, 1412, 1529M
  16. Mathewson, D. S., Ford, V. L., & Buchhorn, M., 1992, A Southern Sky Survey of the Peculiar Velocities of 1355 Spiral Galaxies, ApJS, 81, 413 https://doi.org/10.1086/191700
  17. Mersini-Houghton, L. & Holman, R., 2009, "Tilting" the Universe with the Landscape Multiverse: the Dark Flow, JCAP, 2, 6
  18. Planck Collaboration, & Planck III, 2013, Planck Interme-diate Results. XIII. Constraints on Peculiar Velocities, A&A, arXiv 1303, 5090
  19. Planck Collaboration, Planck VI, 2013, Planck Intermediate Results. XVI. Profile Likelihoods for Cosmological Parameters, A&A Submitted, arXiv, 1311, 1657v2
  20. Smoot, G. F., et al., 1992, Structure in the COBE Differential Microwave Radiometer First-year Maps, ApJL, 396, L1 https://doi.org/10.1086/186504
  21. Tully, R. B., Courtois, H., Hoffman, Y., & Pomarede, D., 2014, The Laniakea Supercluster of Galaxies, Nature, 513, 71 https://doi.org/10.1038/nature13674
  22. Turner, M. S., 1991, Tilted Universe and OtherRremnants of the Preinflationary Universe, PhRvD, 44, 3737