DOI QR코드

DOI QR Code

The Properties of Atomic Layer Deposited Al-Doped ZnO Films Using H2O and O3 As Oxidants

H2O, O3 반응기체로 원자층 증착된 Al-doped ZnO 박막의 특성

  • Kim, Min Yi (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Young Joon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
  • 김민이 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조영준 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 장효식 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2015.09.14
  • Accepted : 2015.09.24
  • Published : 2015.10.01

Abstract

We have investigated the properties of Al-doped ZnO (AZO) thin films as functions of atomic layer deposition (ALD) oxidants. AZO transparent conducting oxides (TCOs) layer was deposited by ALD with adding trimethylaluminum (TMA) and diethylzinc (DEZn). AZO films were deposited at low temperature with $H_2O$ and $O_3$ as oxidants. Electrical, optical and structural properties of AZO thin films were investigated by 4-point probe, Hall effect measurement, UV-VIS, and AFM. Microstructure and atomic bonding states were investigated by HRXRD and XPS. The resistivity of AZO films grown using $H_2O$ was lower than the films grown using $H_2O$ and $O_3$, by approximately two orders of magnitude. The differences in oxygen vacancy peak intensity of AZO films were correlated to the optical and electrical properties.

Keywords

References

  1. J. S. Lim, K. S. Jeong, H. S. Shin, H. J. Yun, S. D. Yang, Y. M. Kim, H. D. Lee, and G. W. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 491 (2011).
  2. S. K. Kim, C. S. Hwang, S. H. Ko Park, and S. J. Yun, Thin Solid Films, 478, 103 (2005). [DOI: http://dx.doi.org/10.1016/j.tsf.2004.10.015]
  3. B. K. Yu, J. J. Han, and O. S. Song, J. Met. Mater., 48, 1109 (2010).
  4. D. J. Lee, H. M. Kim, J. Y. Kwon, H. J. Choi, S. H. Kim, and K. B. Kim, Adv. Funct. Mater., 21, 448 (2011). [DOI: http://dx.doi.org/10.1002/adfm.201001342]
  5. Y. L. Lee, T. H. Huang, C. L. Ho, and M. C. Wu, ECS J. Solid State Science and Technology, 2, 182 (2013). [DOI: http://dx.doi.org/10.1149/2.043309jss]
  6. D. J. Lee, K. J. Kim, S. H. Kim, J. Y. Kwon, J. Xu, and K. B. Kim, J. Mater. Chem. C, 1, 4761 (2013). [DOI: http://dx.doi.org/10.1039/c3tc30469h]
  7. Y. J. Choi and H. H. Park, J. Mater. Chem. C, 2, 98 (2014). [DOI: http://dx.doi.org/10.1039/C3TC31478B]
  8. J. C. Lee, N. G. Subramaniam. J. W. Lee, J. C. Lee, and T. W. Kang, Phys. Status Solidi A, 210, 2638 (2013). [DOI: http://dx.doi.org/10.1002/pssa.201330042]
  9. Z. Wan, W. S. Kwack, W. J. Lee, S. I. Jang, H. R. Kim, J. W. Kim, K. W. Jung, W. J. Min, K. S. Yu, S. H. Park, E. Y. Yun, J. H. Kim, and S. H. Kwon, Materials Research Bulletin, 57, 23 (2014). [DOI: http://dx.doi.org/10.1016/j.materresbull.2014.04.070]
  10. M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, Thin Solid Films, 280, 20 (1996). [DOI: http://dx.doi.org/10.1016/0040-6090(95)08239-5]
  11. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, Applied Surface Science, 158, 134 (2000). [DOI: http://dx.doi.org/10.1016/S0169-4332(99)00601-7]
  12. Y. Y. Chen, J. C. Hsu, C. Y. Lee, and P. W. Wang, J Mater Sci., 48, 1225 (2013). [DOI: http://dx.doi.org/10.1007/s10853-012-6863-7]
  13. H. W. Park, K. B. Chung, J. S. Park, S. Ji, K. Song, H. Lim, and M. H. Jang, Ceramics International, 41, 1641 (2015). [DOI: http://dx.doi.org/10.1016/j.ceramint.2014.09.102]
  14. H. J. Jung. W. C. Shin, and S. G. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 137 (2009).
  15. S. J. Kim, K. Choi, and S. Y. Choi, J. Photonic Science and Technology, 2, 29 (2012).