DOI QR코드

DOI QR Code

A Comparison of Methods to Remove the Boron Rich Layer Formed at Boron Doping Process for c-Si Solar Cell Applications

결정질 실리콘 태양전지의 적용을 위해 보론 확산 공정에서 생성되는 Boron Rich Layer 제거 연구

  • Choi, Ju Yeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Young Joon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Chang, Hyo Sik (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
  • 최주연 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조영준 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 장효식 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2015.09.14
  • Accepted : 2015.09.24
  • Published : 2015.10.01

Abstract

We investigated and compared two methods of in-situ oxidation and chemical etching treatment (CET) to remove the boron rich layer (BRL). The BRL is generally formed during boron doping process. It has to be controlled in order not to degrade carrier lifetime and reduce electrical properties. A boron emitter is formed using $BBr_3$ liquid source at $930^{\circ}C$. After that, in-situ oxidation was followed by injecting oxygen of 1,000 sccm into the furnace during ramp down step and compared with CET using a mixture of acid solution for a short time. Then, we analyzed passivation effect by depositing $Al_2O_3$. The results gave a carrier lifetime of $110.9{\mu}s$, an open-circuit voltage ($V_{oc}$) of 635 mV at in-situ oxidation and a carrier lifetime of $188.5{\mu}s$, an $V_{oc}$ of 650 mV at CET. As a result, CET shows better properties than in-situ oxidation because of removing BRL uniformly.

Keywords

References

  1. K. S. Ryu, A. Upadhyaya, H. J. Song, C. J. Choi, A. Rohatgi, and Y. W. Ok, Appl. Phys. Lett., 101, 073902 (2012). [DOI: http://dx.doi.org/10.1063/1.4746424]
  2. K. Bothe, R. Sinton, and J. Schmidt, Prog. Photovolt. Res. Appl., 13, 287 (2005). [DOI: http://dx.doi.org/10.1002/pip.586]
  3. K. S. Ryu and S. J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 18 (2013).
  4. S. P. Phang, W. Liang, B. Wolpensinger, M. A. Kessler, and D. Macdonald, IEEE J. Photoboltaics, 3, (2013).
  5. S. J. Choi, J. I. Lee, M. G. Kang, D. H. Kim, H. E. Song, The Korea Socity for Energy Engineering, 159 (2014).
  6. S. J . Kwon, Thesis, p. 81, Chonbuk University, Jeonju (2013).
  7. C. S. Kim, S. E. Park, Y. D. Kim, H. M. Park, S. T. Kim, H. H. Kim, H. S. Lee, and D. H. Kim, Thin Solid Films, 564, 253 (2014). [DOI: http://dx.doi.org/10.1016/j.tsf.2014.05.038]
  8. M. A. Kessler, T. Ohrdes, B. Wolpensinger, and N. P. Harder, Simecond. Sci. Technol., 25, 9 (2010).
  9. Y. J. Cho and H. S. Chang, Met. Mater. Int., 19, 1377 (2013). [DOI: http://dx.doi.org/10.1007/s12540-013-6035-6]
  10. S. Duttagupta, F. Lin, K. D. Shetty, A. G. Aberle, and B. Hoex, Prog. Photovolt: Rea. Appl., 21, 760 (2013).
  11. Y. W. Ok, A. D. Upadhyaya, Y. Tao, F. Zimbardi, K. S. Ryu, M. H. Kang, and A. Rohatgi, Sol. Energ. Matater. Sol. Cells, 123, 92 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.01.002]