DOI QR코드

DOI QR Code

Preparation of Three-Dimensional Graphene/Metal Oxide Nanocomposites for Application of Supercapacitors

슈퍼커패시터 응용을 위한 3차원 그래핀/금속 산화물 나노복합체 제조

  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 김정원 (강원대학교 화학공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2015.09.14
  • Accepted : 2015.09.17
  • Published : 2015.10.10

Abstract

Graphene-based electrode materials have been widely explored for supercapacitor applications due to their unique two-dimensional structure and properties. In particular, Three-dimensional (3D) graphene materials are of great importance for preparing electrode materials because they can provide large surface area, efficient and rapid electron and ion transfer, and mechanical stability. Recently, a number of 3D hybrid architecture of graphene/metal oxides have been developed to increase simultaneously energy and power densities of supercapacitors. This review presents the recent progress of 3D nanocomposites based on graphene and metal oxides. Preparation methods and structures of these 3D nanocomposites and their great potential in supercapacitor applications have been summarized.

2차원 구조와 우수한 물성을 지닌 그래핀 기반의 전극 재료들은 슈퍼커패시터에 많이 응용되어 왔다. 특히 3차원 구조의 그래핀 소재들은 전극 제조에 매우 중요한데 이는 3차원 구조가 넓은 표면적, 효과적이고 빠른 전기 및 이온 전달, 우수한 기계적 물성을 제공하기 때문이다. 최근에는 3차원 하이브리드 구조를 가지는 그래핀/금속 산화물 재료들이 슈퍼커패시터의 에너지와 파워 밀도를 동시에 증가시키고자 개발되어 왔다. 본 논문은 그래핀과 금속 산화물로 이루어진 3차원 나노복합체의 최근 연구 경향을 논하고자 한다. 3차원 나노복합체의 제조와 구조 및 이를 이용한 슈 퍼커패시터의 응용을 다룬다.

Keywords

References

  1. J. Y. Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014). https://doi.org/10.1002/aenm.201300816
  2. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014). https://doi.org/10.1039/c3ee44164d
  3. X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
  4. Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014). https://doi.org/10.1038/509568a
  5. S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2014).
  6. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013). https://doi.org/10.1039/c3ra23466e
  7. M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012). https://doi.org/10.1126/science.1216744
  8. C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, and F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V, J. Am. Chem. Soc., 136, 2256-2259 (2014). https://doi.org/10.1021/ja412219r
  9. T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, and Y. Tong, 3D $MnO_2$-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors, Nanoscale, 5, 6790-6796 (2013). https://doi.org/10.1039/c3nr01589k
  10. X. Wang, B. D. Myers, J. Yan, G. Shekhawat, V. Dravid, and P. S. Lee, Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale, 5, 4119-4122 (2013). https://doi.org/10.1039/c3nr00210a
  11. X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, and Y. Ma, Recent advances in porous graphene materials for supercapacitor applications, RSC Adv., 4, 45862-45884 (2014). https://doi.org/10.1039/C4RA07869A
  12. Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphen-based materials in supercapacitors, Small, 4, 1805-1834 (2012).
  13. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
  14. C. Li and G. Shi, Three-dimensional graphene architectures, Nanoscale, 4, 5549-5563 (2012). https://doi.org/10.1039/c2nr31467c
  15. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8, 3498-3502 (2008). https://doi.org/10.1021/nl802558y
  16. X. Cao, Z. Yin, and H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci., 7, 1850-1865 (2014). https://doi.org/10.1039/C4EE00050A
  17. A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014). https://doi.org/10.1021/cr500023c
  18. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766-3798 (2013). https://doi.org/10.1021/cr300263a
  19. Y. Xu and G. Shi, Assembly of chemically modified graphene: methods and applications, J. Mater. Chem., 21, 3311-3323 (2011). https://doi.org/10.1039/C0JM02319A
  20. H. Bai, C. Li, X. Wang, and G. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun., 46, 2376-2378 (2010). https://doi.org/10.1039/c000051e
  21. B. Hua, L. Chun, W. X. Lin, and S. G. Quan, On the gelation of graphene oxide, J. Phys. Chem., 115, 5545-5551 (2011). https://doi.org/10.1021/jp111308f
  22. O. C. Compton, Z. An, K. W. Putz, B. J. Hong, B. G. Hauser, L. C. Brinson, and S. T. Nguyen, Additive-free hydrogelation of graphene oxide by ultrasonication, Carbon, 50, 3399-3406 (2012). https://doi.org/10.1016/j.carbon.2012.01.061
  23. Y. Xu, Q. Wu, Y. Sun, H. Bai, and G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels, ACS Nano, 4, 7359-7362 (2010).
  24. H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-aseembly process, ACS Nano, 6, 2693-2703 (2012). https://doi.org/10.1021/nn300082k
  25. H. Sun, Z. Xu, and C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater., 25, 2554-2560 (2013). https://doi.org/10.1002/adma.201204576
  26. S. Korkut, J. D. Roy-Mayhew, D. M. Dabbs, D. L. Milius, and I. A. Aksay, High surface area tapes produced with functionalized graphene, ACS Nano, 5, 5214-5222 (2011). https://doi.org/10.1021/nn2013723
  27. X. Yang, J. Zhu, L. Qiu, and D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Adv. Mater., 23, 2833-2838 (2011). https://doi.org/10.1002/adma.201100261
  28. F. Liu and T. S. Seo, A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films, Adv. Funct. Mater., 20, 1930-1936 (2010). https://doi.org/10.1002/adfm.201000287
  29. M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., and T. F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132, 14067-14069 (2010). https://doi.org/10.1021/ja1072299
  30. C. C. Ji, M. W. Xu, S. J. Bao, Z. J. Lu, C. J. Cai, H. Chai, R. Y. Wang, F. Yang, and H. Wei, Self-assembled three-dimensional interprenetrating porous graphene aerogels with $MnO_2$ coating and their application as high-performance supercapacitors, New J. Chem., 37, 4199-4205 (2013). https://doi.org/10.1039/c3nj00599b
  31. B. G. Choi, Y. S. Huh, W. H. Hong, D. Erickson, and H. S. Park, Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors, Nanoscale, 5, 3976-3981 (2013). https://doi.org/10.1039/c3nr33674c
  32. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012). https://doi.org/10.1021/nn3003345
  33. B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, and Y. S. Huh, 3D heterostructured architectures of $Co_3O_4$ nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries, Nanoscale, 4, 5924-5930 (2012). https://doi.org/10.1039/c2nr31438j
  34. X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, and D. Zhao, Functional nanoporous graphene foams with controlled pore sizes, Adv. Mater., 24, 4419-4423 (2012). https://doi.org/10.1002/adma.201201680
  35. G. H. Moon, Y. Shin, D. Choi, B. W. Arey, G. J. Exarhos, C. Wang, W. Choi, and J. Liu, Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures, Nanoscale, 5, 6291-6296 (2013). https://doi.org/10.1039/c3nr01387a
  36. L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, and E. P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating, J. Am. Chem. Soc., 133, 6122-6125 (2011). https://doi.org/10.1021/ja200244s
  37. Y. Q. Zhao, D. D. Zhao, P. Y. Tang, Y. M. Wang, C. L. Xu, and H. L. Li, $MnO_2$/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett., 76, 127-130 (2012). https://doi.org/10.1016/j.matlet.2012.02.097
  38. S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, Graphene oxide-$MnO_2$ nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010). https://doi.org/10.1021/nn901311t
  39. S. Chen, J. Zhu, and X. Wang, One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties, J. Phys. Chem., 114, 11829-11834 (2010).
  40. Z. Ma, X. Hunag, S. Dou, J. Wu, and S. Wang, One-pot synthesis of $Fe_2O_3$ nanoparticles on nitrogen doped graphene as advanced supercapacitor electrode materials, J. Phys. Chem., 118, 17231-17239 (2014).
  41. K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u
  42. S. Wu, W. Chen, and L. Yan, Fabrication of a 3D $MnO_2$/graphene hydrogel for high-peformance asymmetric supercapacitors, J. Mater. Chem. A, 2, 2765-2772 (2014). https://doi.org/10.1039/c3ta14387b
  43. H. Wang, H. Yi, X. Chen, and X. Wang, One-step strategy to three-dimensional graphene/$VO_2$ nanobelt composite hydrogels for high performance supercapacitors, J. Mater. Chem. A, 2, 1165-1173 (2014). https://doi.org/10.1039/C3TA13932H
  44. L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, and C. Chen, Self-assembled 3D graphene-based aerogel with $Co_3O_4$ nanoparticles as high-performance asymmetric supercapacitor electrode, Chem. Sus. Chem., 8, 2917-2926 (2015). https://doi.org/10.1002/cssc.201500355
  45. X. Zhu, P. Zhang, S. Xu, X. Yan, and Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications, ACS Appl. Mater. Interfaces, 6, 11665-11674 (2014). https://doi.org/10.1021/am5024258
  46. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, and Z. Bao, Solution-processed graphene/$MnO_2$ nanostructured textiles for high-performance electrochemical capacitors, Nano Lett., 11, 2905-2911 (2011). https://doi.org/10.1021/nl2013828