DOI QR코드

DOI QR Code

Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity

Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성

  • Kim, Ji Sun (Ulsan Regional Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Jong-Hwa (Department of Chemical Engineering, Changwon National University) ;
  • Lee, Man Sig (Ulsan Regional Division, Korea Institute of Industrial Technology (KITECH))
  • 김지선 (한국생산기술연구원 울산지역본부) ;
  • 홍성수 (부경대학교 화학공학과) ;
  • 김종화 (창원대학교 화공시스템공학과) ;
  • 이만식 (한국생산기술연구원 울산지역본부)
  • Received : 2015.07.15
  • Accepted : 2015.07.31
  • Published : 2015.10.10

Abstract

Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.

본 연구는 여러 가지 방법에 의해 제조된 Pd/C 촉매의 특성을 질소흡탈착등온선, XRD, FE-TEM 및 CO-chemisorption을 이용하여 확인하였고, 제조된 촉매의 활성을 cyclohexene의 수소화 반응을 통하여 확인하여 제조방법에 따른 촉매의 특성 변화가 촉매 활성에 미치는 영향에 대하여 연구하였다. 각각의 제조방법을 통하여 제조된 Pd/C 촉매의 FE-TEM 분석결과, 이온교환법으로 제조된 촉매의 분산 정도가 매우 우수하며, 폴리올법으로 제조된 촉매의 분산 정도가 매우 낮음을 확인하였다. CO-chemisorption 분석에 의한 분산도 결과 이온교환법, 함침법 및 폴리올법으로 제조된 촉매의 Pd 분산도가 각각 17.55, 13.82% 및 1.35%로 나타나 FE-TEM 결과와 일치함을 확인하였다. 이후 cyclohexene의 수소화반응을 통하여 제조된 촉매의 활성을 확인하였고, 이온교환법으로 제조된 촉매의 cyclohexene의 전환율이 71%로 가장 높음을 확인하였다. 이는 탄소 담지체에 담지된 Pd의 분산도가 반응 활성에 영향을 미쳐 나타난 결과임을 알 수 있었다.

Keywords

References

  1. P. Tribolet and L. Kiwi-Minsker, Palladium on carbon nanofibers grown on metallic filters as novel structured catalyst, Catal. Today, 105, 337-343 (2005). https://doi.org/10.1016/j.cattod.2005.06.035
  2. T. Onoe, S. Iwamoto, and M. Inoue, Synthesis and activity of the Pt catalyst supported on CNT, Catal. Commun., 8, 701-706 (2007). https://doi.org/10.1016/j.catcom.2006.08.018
  3. H.-G. Liao, Y.-J. Xiao, and H.-K. Zhang, Hydrogenation of nitrocyclohexane to cyclohexanone oxime over Pd/CNT catalyst under mild conditions, Catal. Commun., 19, 80-84 (2012). https://doi.org/10.1016/j.catcom.2011.12.027
  4. A. M. Fuente, G. Pulgar, F. Gonzalez, C. Pesquera, and C. Blanco, Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation, Appl. Catal. A: General, 208, 35-46 (2001). https://doi.org/10.1016/S0926-860X(00)00699-2
  5. J. S. Kim, J. H. Baek, M. H. Kim, S. S. Hong, and M. S. Lee, Synthesis of Succinic Acid from Hydrogenation of Maleic Anhydride, Appl. Chem. Eng., 24, 650-655 (2013). https://doi.org/10.14478/ace.2013.1091
  6. Y. Souichi, H. Hidefumi, M. Shochi, and A. Yoji, Japan Patent, 09-204148 (1997).
  7. J. Jia, Y. Wang, E. Tanabe, and T. Shishido, K. Takehira, Carbon fibers prepared by pyrolysis of methane over Ni/MCM-41 catalyst, Micropor. Mesopor. Mater., 57, 283-289 (2003). https://doi.org/10.1016/S1387-1811(02)00598-X
  8. A. M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B, 103, 6484-6492 (1999). https://doi.org/10.1021/jp990957s
  9. Y. Zhang and K, J. Smith, CH4 decomposition on Co catalysts: effect of temperature, dispersion, and the presence, Catal. Today, 77, 257-268 (2002). https://doi.org/10.1016/S0920-5861(02)00251-1
  10. S. Takenaka, H. Ogihara, and K. Otsuka, Structural Change of Ni Species in Ni/SiO2 Catalyst. During Decomposition of Methane, J. Catal., 208, 54-63 (2002). https://doi.org/10.1006/jcat.2002.3523
  11. T. V. Choudhary, C. Sivadinarayana, C. C. Chusuei, A. Klinghoffer, and D. W. Goodman, Hydrogen production via catalytic decomposition of methane, J. Catal., 199, 9-18 (2001). https://doi.org/10.1006/jcat.2000.3142
  12. N. R. Laine, F. J. Vastoal, and P. L. Walker Jr., Proceedings of 5 th carbon conference, Pergamon Press, New york (1963).
  13. P. Ehrburger, O. P. Majahan, and P. L. Walker, Jr., Carbon as a support for catalysts: I. Effect of surface heterogeneity of carbon on dispersion of platinum, J. Catal., 43, 61-67 (1976). https://doi.org/10.1016/0021-9517(76)90293-1
  14. J. H. Vleeming, B. F. M. Kuster, G. B. Marin, F. Oudet, and P. Courtine, Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments, J. Catal., 166, 148-159 (1997). https://doi.org/10.1006/jcat.1997.1489
  15. P. L. Antonucci, V. alderucci, N. Giordano, D. L. cocke, and H. Kim, On the role of surface functional groups in Pt carbon interaction, J. Appl. Electrochem., 24, 58-65 (1994).
  16. H. Marsh, Introduction to Carbon Science, Butterworths, London, 1 (1989).
  17. H. Marsh, Introduction to Carbon Technologies, Universidad de Alicant, 36 (1999).
  18. M. Smisek and S. Cerny, Active Carbon, Elsevier, New York (1970).
  19. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, and A. Wieckowski, Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic Acid, J. Phys. Chem. B, 110, 13393-13398 (2006). https://doi.org/10.1021/jp061690h
  20. Y. Xing, Synthesis and Electrochemical Characterization of Uniformly-Dispersed High Loading Pt Nanoparticles on Sonochemically-Treated Carbon Nanotubes, J. Phys. Chem. B, 108, 19255-16259 (2004). https://doi.org/10.1021/jp046697i
  21. S. Saha, S. J. Ghanawat, and R. D. Purohit, Solution combustion synthesis of nanoparticle La0.9Sr0.1MnO3 powder by a unique oxidant-fuel combination and its characterization, J. Mater. Sci., 41, 1939-1943 (2006). https://doi.org/10.1007/s10853-006-2655-2
  22. J. A. Andesom, A. Athawale, F. E. Imrie, F.-M. Mkenna, A. MCue, D. Molyneux, and K. Power, Aqueous phase hydrogenation of substituted phenyls over carbon nanofibre and activated carbon supported Pd, J. Catal., 270, 9-15 (2010). https://doi.org/10.1016/j.jcat.2009.11.028

Cited by

  1. The Effect of Support Pretreatment with Ammonia on Pd/SiO2 Catalyst vol.922, pp.1662-9752, 2018, https://doi.org/10.4028/www.scientific.net/MSF.922.125
  2. 폐촉매로부터 Pd회수 및 이를 이용한 Pd/C 촉매 재제조 기술 개발 vol.29, pp.4, 2018, https://doi.org/10.14478/ace.2018.1022