DOI QR코드

DOI QR Code

Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons

불소화 처리된 페놀계 활성탄소를 이용한 톨루엔 가스흡착 특성

  • Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Min Il (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김민지 (충남대학교 바이오응용화학과) ;
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 김민일 (충남대학교 바이오응용화학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2015.08.03
  • Accepted : 2015.09.14
  • Published : 2015.10.10

Abstract

Activated carbons (ACs) were treated by fluorination to improve the adsorption property of toluene gas among volatile organic compounds (VOCs). The pore characteristics and surface properties of these activated carbons were evaluated by BET and XPS and the adsorption property and removal efficiency of toluene gas was investigated by gas chromatography. The breakthrough time of fluorinated ACs was increased about 27% compared to that of untreated ACs when the toluene gas of 100 ppm was flowed at a flow rate of $300cm^3/min$. Fluorinated AC of 0.1 g adsorbent totally adsorbed toluene gas in 100 ppm to 100 % during the adsorption time in 19 h. These results can be used as a treatment technology or removal of carcinogenic materials such as toluene.

휘발성 유기화합물(Volatile organic compounds, VOCs) 중 톨루엔 가스의 흡착특성을 향상시키기 위하여 불소화 반응을 이용하여 활성탄소를 처리하였다. 이 활성탄소의 기공특성과 표면특성 평가를 위하여 비표면적 측정기와 X선광전자분광법(XPS)을 사용하여 분석하였고, 가스크로마토그래피를 이용하여 톨루엔 가스 흡착능과 제거효율을 고찰하였다. 100 ppm의 톨루엔 가스가 $300cm^3/min$으로 주입될 때, 불소화 처리된 활성탄소의 파과시간이 미처리 활성탄소에 비하여 약 27% 증가하였다. 0.1 g의 불소처리 활성탄소 흡착재는 19 h의 흡착시간 동안 100 ppm 농도의 톨루엔 가스를 모두 제거하였다. 이러한 실험 결과들은 톨루엔과 같은 발암성 물질을 제거하는 처리 기술로 활용될 수 있음을 보여주었다.

Keywords

References

  1. S. C. Jung and S. H. Lee, Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs), J. Korean Soc. Environ. Eng., 34, 397-405(2012). https://doi.org/10.4491/KSEE.2012.34.6.397
  2. I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, Multi-walled carbon nanotubes for volatile organic compound detection, Sens. Actuators B Chem., 182, 344-350 (2013). https://doi.org/10.1016/j.snb.2013.03.020
  3. Y. Kim, D. Y. Kim, M. J. Jung, M. I. Kim, and Y. S. Lee, The preparation of $TiO_2$ coated activated carbon pellets driven by LED and removal characteristics of VOCs, Appl. Chem. Eng., 24, 314-319 (2013).
  4. S. H. Kim, T. S. Kang, H. S. Yang, T. N. Y. Vu, and H. S. Park, Catalytic Deep Oxidation of Volatile Organic Compounds Toluene and Toluene+Xylene over Pt/${\gamma}$-Al2O3 Catalysts at Lower Temperatures, J. Korean Soc. Atmos. Envrion., 22, 799-807 (2006).
  5. H. H. An, A Study on VOCs Adsorption Properties Using Fine-fiber, J. Korean Inst. Gas, 14, 35-40 (2010).
  6. Y. N. Chun, E. H. Kim, M. S. Lim, and W. I. Cheon, Development of a Plasma-Dump Combustor for the VOCs Destruction, Trans. Korean Soc. Mech. Eng., 11, 2815-2820 (2014).
  7. S. W. Huang, J. C. Lou, and Y. C. Lin, Treatment of VOCs with molecular sieve catalysts in regenerative catalytic Oxidizer, J. Hazard Mater, 183, 641-647 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.073
  8. H. S. Kim and Y. S. Park, Binary component adsorption characteristics of benzene and toluene at the fixed bed Adsorption column with activated carbon, J. Korean Soc. Environ. Eng., 25, 977-983 (2003).
  9. K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani, and S. Pattabhi, Mercury (II) adsorption by activated carbon made from sago waste, Carbon, 42, 745-752 (2004). https://doi.org/10.1016/j.carbon.2003.12.089
  10. H. S. Ju, S. I. Lee, Y. S. Lee, and H. G. Ahn, Surface modification of activated carbon by acid treatment and adsorption property of heavy metals, Appl. Chem., 4, 173-176 (2000).
  11. S. Ko, D. H. Kim, Y. D. Kim, D. Park, W. Jeong, D. H. Lee, J. Y. Lee, and S. B. Kwon, Investigation on CO adsorption and catalytic oxidation of commercial impregnated activated carbons, Appl. Chem. Eng., 24, 513-517 (2013).
  12. S. X. Liu, X. Chen, X. Y. Chen, Z. F. Liu, and H. L. Wang, Activated carbon with excellent chromium (VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater., 141, 315-319 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.006
  13. B. Cardoso, A. S. Mestre, A. P. Carvalho, and J. Pires, Activated Carbon Derived from Cork Powder Waste by KOH Activation: Preparation, Characterization, and VOCs Adsorption, Ind. Eng. Chem. Res., 47, 5841-5846 (2008). https://doi.org/10.1021/ie800338s
  14. M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of Polymethylmethacrylate (PMMA) Film and Its Surface Characterization, Appl. Chem. Eng., 21, 317-322 (2010).
  15. J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49(7), 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
  16. J. S. Im, J. Yun, Y. M. Lim, H. I. Kim, and Y. S. Lee, Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system, Acta Biomater, 6, 102-109 (2010). https://doi.org/10.1016/j.actbio.2009.06.017
  17. J. H. Kim, J. S. Lim, K. W. Seo, and Y. S. Lee, Influence of fluorinated illite on thermal, antibiotic and far-infrared emission properties of polypropylene non-woven fibers, Polymer(Korea), 37, 86-93 (2013).
  18. N. S. Kong, S. G. Cha, and J. Y. Seo, Characterization of Toluene Vapor Removal Efficiency Using Alnus Firma Fruit in a Biological Treatment Process, J. Korean Soc. Atmos. Envrion., 19, 689-699 (2003).
  19. M. G. Lee, P. J. Jun, D. H. Lee, and S. K. Kam, Removal of toluene vapor in the biofilter packed with activated carbon/ polyurethane composite media, J. Korean Ind. Eng. Chem., 14, 864-868 (2003).
  20. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the Fluorination of Activated Carbons on the Chromium Ion Adsorption, Appl. Chem. Eng., 26, 92-98 (2015). https://doi.org/10.14478/ace.2014.1126
  21. C. L. Mangun, K. R. Benak, J. Economy, and K. L. Foster, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon, 39, 1809-1820 (2001). https://doi.org/10.1016/S0008-6223(00)00319-5
  22. W. Jin, Y. Wang, X. Wang, L. Jin, J. Lu, and M. Luo, Sorption properties of ordered mesoporous silica for Toluene and Ethyl acetate, Adsorpt. Sci. Technol., 29, 405-412 (2011). https://doi.org/10.1260/0263-6174.29.4.405
  23. J. S. Im, S. J. Park, T. J. Kim, Y. H. Kim, and Y. S. Lee, The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption, J. Colloid Interface Sci., 318, 42-49 (2008). https://doi.org/10.1016/j.jcis.2007.10.024
  24. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluorine Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  25. R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Improvement in the mechanical properties of polyacrylonitrile (PAN) -based carbon fibers after fluorination, Synth. Met., 114, 197-200 (2000). https://doi.org/10.1016/S0379-6779(00)00251-4
  26. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  27. J. M. Lee, S. J. Kim, J. W. Kim, P. H. Kang, Y. C. Nho, and Y. S. Lee, A high resolution XPS study of sidewall functionalized MWCNTs by fluorination, J. Ind. Eng. Chem., 15, 66-71 (2009). https://doi.org/10.1016/j.jiec.2008.08.010
  28. M. J. Jung, E. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine. Chem., 132, 1127-1133 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.046
  29. S. G. Kim and Y. R. Chang, Adsorption characteristics of toluene in the adsorption bed packed with activated carbon fiber, J. Korean Soc. Atmos. Envrion., 24, 220-228 (2008). https://doi.org/10.5572/KOSAE.2008.24.2.220
  30. D. Y. Kim, Y. Kim, S. Cho, J. Y. Jung, M. I. Kim, and Y. S. Lee, Preparation of Pelletized Porous Adsorbent with Pyrolysis Temperature and Its Toluene Gas Adsorption Characteristics, Appl. Chem. Eng., 24, 587-592 (2013). https://doi.org/10.14478/ace.2013.1052
  31. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibers, J. Fluorine Chem., 84, 127-134 (1997). https://doi.org/10.1016/S0022-1139(97)00029-8
  32. C. H. Shim and W. K. Lee, The change of adsorption characteristics for VOCs by $HNO_3$ activation of adsorbent prepared from MSWI fly ash, J. Korean Soc. Atmos. Envrion., 21, 471-478 (2005).

Cited by

  1. Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1033
  2. 새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향 vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1007
  3. 활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성 vol.30, pp.2, 2019, https://doi.org/10.14478/ace.2018.1122
  4. 활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성 vol.21, pp.2, 2015, https://doi.org/10.17702/jai.2020.21.2.51
  5. 플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1098