A Note on S-Noetherian Domains

  • LIM, JUNG WOOK (Department of Mathematics, Kyungpook National University)
  • Received : 2014.09.10
  • Accepted : 2014.11.07
  • Published : 2015.09.23


Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.


  1. D. D. Anderson, D. F. Anderson, and R. Markanda, The ring R(X) and R(X), J. Algebra, 95(1985), 96-115.
  2. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(2002), 4407-4416.
  3. D. D. Anderson, B. G. Kang, and M. H. Park, Anti-archimedean rings and power series rings, Comm. Algebra, 26(1998), 3223-3238.
  4. D. D. Anderson, D. J. Kwak, and M. Zafrullah, Agreeable domains, Comm. Algebra, 23(1995), 4861-4883.
  5. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
  6. G. W. Chang, Strong Mori domains and the ring $D[X]_{N_v}$, J. Pure Appl. Algebra, 197(2005), 293-304.
  7. M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra, 26(1998), 1017-1039.
  8. R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure Appl. Math., 90, Queen's University, Kingston, Ontario, 1992.
  9. B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra, 123(1989), 151-170.
  10. I. Kaplansky, Commutative Rings, Polygonal Publishing House, Washington, New Jersey, 1994.
  11. H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra, 416(2014), 314-332.
  12. J. W. Lim and D. Y. Oh, S-Noetherian properties of composite ring extensions, Comm. Algebra, 43(2015), 2820-2829.
  13. J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218(2014), 1075-1080.
  14. Z. Liu, On S-Noetherian rings, Arch. Math. (Brno), 43(2007), 55-60.
  15. F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra, 25(1997), 1285-1306.

Cited by

  1. Chain conditions on composite Hurwitz series rings vol.15, pp.1, 2017,