KYUNGPOOK Math. J. 55(2015), 515-530 http://dx.doi.org/10.5666/KMJ.2015.55.3.515 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Characterization of Additive (m, n)-Semihyperrings

Saeed Mirvakili

Department of Mathematics, Payame Noor University, 19395-4697 Tehran, Iran e-mail: saeed_mirvakili@pnu.ac.ir

BIJAN DAVVAZ* Department of Mathematics, Yazd University, Yazd, Iran e-mail: davvaz@yazd.ac.ir

ABSTRACT. We say that (R, f, g) is an additive (m, n)-semihyperring if R is a non-empty set, f is an m-ary associative hyperoperation, g is an n-ary associative operation and g is distributive with respect to f. In this paper, we describe a number of characterizations of additive (m, n)-semihyperrings which generalize well-known results. Also, we consider distinguished elements, hyperideals, Rees factors and regular relations. Later, we give a natural method to derive the quotient (m, n)-semihyperring.

1. Introduction

Canonical hypergroups [24] is a special class of Marty's hypergroup [22]. The more general structure that satisfies the ring-like axioms is the hyperring in the general sense: $(R, +, \cdot)$ is a hyperring if + and \cdot are two hyperoperations such that (R, +) is a hypergroup and \cdot is an associative hyperoperation, which is distributive with respect to +. There are different notions of hyperrings. If only the addition + is a hyperoperation and the multiplication \cdot is a usual operation, then we say that R is an additive hyperring. A special case of this type is the hyperring introduced by Krasner [16]. According to [7], an *additive semihyperring* is a system consisting of a set S together with a binary hyperoperation on S called *hypersum* and a binary operation *multiplication* (denoted in the usual manner) such that (1) S together with hypersum +, is a (commutative) semihypergroup, (2) S together with multiplication \cdot is a semigroup, (3) $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$, for all

Key words and phrases: hypergroup, hyperring, additive (m, n)-semihyperring, hyperideal, strongly regular relation.

^{*} Corresponding Author.

Received November 9, 2013; revised July 14, 2014; accepted August 21, 2014.

²⁰¹⁰ Mathematics Subject Classification: 16Y99, 20N20.

$a, b, c \in S$.

The idea of investigations of *n*-ary algebras, i.e., sets with one *n*-ary operation, seems to be going back to Kasner's lecture [15] at the 53rd annual meeting of the American Association of the Advancement of Science in 1904. But the first paper concerning the theory of *n*-ary groups was written (under inspiration of Emmy Noether) by Dörnte in 1928 (see [12]). Since then many papers concerning various *n*-ary algebras have appeared in the literature, for example see [5, 25, 26]. The concept of *n*-ary hypergroup is defined by Davvaz and Vougiouklis in [9], which is a generalization of the concept of hypergroup in the sense of Marty and a generalization of *n*-ary group, too. Then this concept was studied by Anvariyeh, Davvaz, Dudek, Leoreanu-Fotea Mirvakili, Vougiouklis, and others, for example see [1, 10, 11, 14, 18, 19, 20, 21]. The concept of *n*-ary algebraic hyperstructures constitute a generalization of well-known algebraic hyperstructures (semihypergroup, hypergroup, hyperring and so on).

Let S be a set. A map f from $S \times \ldots \times S$ to $\wp^*(S)$, the non-empty subsets of S, where S appears n times, is called an *n*-ary hyperoperation. If f is an n-ary hyperoperation defined on S, then (S, f) is called an *n*-ary hypergroupoid. We shall use the following abbreviated notation: the sequence $x_i, x_{i+1}, \ldots, x_j$ will be denoted by x_i^j . For j < i, x_j^j is the empty symbol. In this convention

$$f(x_1,\ldots,x_i,y_{i+1},\ldots,y_j,z_{j+1},\ldots,z_n)$$

will be written as $f(x_1^i, y_{i+1}^j, z_{j+1}^n)$. In the case when $y_{i+1} = \ldots = y_j = y$ the last expression will be written in the form $f(x_1^i, \overset{(j-i)}{y}, z_{j+1}^n)$. Also, for non-empty subsets A_1, \ldots, A_n of S we define $f(A_1^n) = f(A_1, \ldots, A_n) = \bigcup \{f(x_1^n) \mid x_i \in A_i, i = 1, \ldots, n\}$. An *n*-ary hyperoperation f is called *associative* if

$$f(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1}) = f(x_1^{j-1}, f(x_j^{n+j-1}), x_{n+j}^{2n-1})$$

holds for every $i, j \in \{1, \ldots, n\}$ and all $x_1, x_2, \ldots, x_{2n-1} \in S$. An *n*-ary hypergroupoid with the associative hyperoperation is called an *n*-ary semihypergroup. group. An *n*-ary semihypergroup (S, f) is called *n*-ary hypergroup if for every $x_1^n \in S$ and $i = \{1, \ldots, n\}$ we have $f(x_1^{i-1}, S, x_{i+1}^n) = S$. An *n*-ary hypergroupoid (S, f) is commutative if for all $\sigma \in S_n$ and for every $a_1^n \in S$ we have $f(a_1, \ldots, a_n) = f(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$. If $a_1^n \in S$ we denote $a_{\sigma(1)}^{\sigma(n)}$ as the $a_{\sigma(1)}, \ldots, a_{\sigma(n)}$. An element e of S is called a *neutral element* (scalar neutral element) if $x \in f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e})(x = f(\stackrel{(i-1)}{e}, x, \stackrel{(n-i)}{e}))$, for all $x \in S$ and all $1 \leq i \leq n$. An *n*-ary semihypergroup (S, f) is *i*-cancellative, if for every $a_2, \ldots, a_n \in S$, $f(a_2^i, x, a_{i+1}^n) = f(a_2^i, y, a_{i+1}^n)$ implies x = y, for all $x, y \in S$. If this implication is valid for all $i = 1, 2, \ldots, n$, then we say that (S, f) is cancellative. If for some $a_2, \ldots, a_n \in S$, $f(a_2^i, x, a_{i+1}^n) = f(a_2^i, y, a_{i+1}^n) = f(a_2^i, y, a_{i+1}^n)$ implies x = y, for all $x, y \in S$ then the elements a_2, \ldots, a_n are called cancellable.

In some papers several authors generalize the study of ordinary rings to the

case where the ring operations are respectively m-ary and n-ary. (m, n)-rings were studied by Crombez [2], Crombez and Timm [3], Dudek [13] and Lee [17].

Now, in this paper we study a generalization of additive semihyperrings and a generalization of (m, n)-semirings.

Definition 1. An *additive* (m, n)-*semihyperring* is an algebraic hyperstructure (R, f, g), which satisfies the following axioms:

- (1) (R, f) is an *m*-ary semihypergroup,
- (2) (R,g) is an *n*-ary semigroup,
- (3) the *n*-ary operation g is distributive with respect to the *m*-ary hyperoperation f, i.e., for every $a_1^{i-1}, a_{i+1}^n, x_1^m \in \mathbb{R}, \ 1 \leq i \leq n$,

$$g(a_1^{i-1}, f(x_1^m), a_{i+1}^n) = f(g(a_1^{i-1}, x_1, a_{i+1}^n), \dots, g(a_1^{i-1}, x_m, a_{i+1}^n)).$$

Throughout this paper, every (m, n)-semihyperring is an additive (m, n)-semihyperring. If f is an m-ary operation then (R, f, g) is called an (m, n)-semiring. An additive (m, n)-semihyperring is called an additive (m, n)-hyperring if (R, f) is an m-ary hypergroup. Let (R, f, g) be an (m, n)-semihyperring such that (R, f) has a neutral (scalar neutral) element 0, then 0 is called a zero (scalar zero) element if $g(x_1^{i-1}, 0, x_{i+1}^n) = 0$, for every $x_1^n \in R$. A special subclass of additive (m, n)-hyperrings is the Krasner (m, n)-hyperring. We recall the following definition from [23]. A Krasner (m, n)-hyperring is an additive (m, n)-hyperring such that (R, f) is a canonical m-ary hypergroup and relating to the n-ary multiplication, (R, g) is an n-ary semigroup having zero element 0. In an additive (m, n)-semihyperring (R, f, g), fixing elements a_2^{m-1} and b_2^{n-1} we obtain a hyperoperation \oplus and an operation \odot as follows: $x \oplus y = f(x, a_2^{m-1}, y)$ and $x \odot y = f(x, b_2^{n-1}, y)$. Choosing different elements a_2^{m-1} and b_2^{n-1} , we obtain different binary relations. Obviously, (R, \oplus, \odot) is an additive semihyperring. Let f be an m-ary hyperoperation and g be an n-ary operation on R as follows: $f(x_1^m) = x_1 \oplus \ldots \oplus x_m$ and $g(y_1^n) = y_1 \odot \ldots \odot y_n$, for all $x_1^m, y_1^n \in R$. Then, (R, f, g) is an (m, n)-semihyperring.

Example 1. Let N be the set of all positive integers. We define an m-ary hyperoperation and an n-ary multiplication on N in the following way:

$$f(x_1, \dots, x_m) = \bigcup_{i=1}^m \{x_i\}$$
 and $g(x_1, \dots, x_n) = \prod_{i=1}^n x_i$,

Then, (N, f, g) is an (m, n)-semihyperring. It has not zero element.

Example 2. Let $(R, +, \cdot)$ be a semiring. We define an *m*-ary hyperoperation and an *n*-ary multiplication on *R* in the following way:

- (1) $f(x_1, \ldots, x_m) = \langle x_1, \ldots, x_m \rangle$, the ideal generated by x_1, \ldots, x_n ,
- (2) $g(x_1^n) = x_1 \cdot \ldots \cdot x_n$.

Then, (R, f, g) is an (m, n)-semihyperring. If R has a zero element 0, then 0 is a zero element of (R, f, g).

Example 3. Let I be the real interval [0, 1] and for every $x, y \in I$, set $x \wedge y = \min\{x, y\}$ and $x \vee y = \max\{x, y\}$. On I we define

- (1) $f(x_1,\ldots,x_m) = \{t \in I \mid x_1 \land \ldots \land x_m \le t \le x_1 \lor \ldots \lor x_m\},\$
- (2) $g(x_1^n) = x_1 \wedge \ldots \wedge x_n$.

Then, (I, f, g) is an (m, n)-semihyperring.

Example 4.([6]) If (L, \wedge, \vee) is a relatively complemented distributive lattice and if \oplus and g are defined as:

- (1) $a \oplus b = \{c \in L \mid a \land c = b \land c = a \land b, a, b \in L\},\$
- (2) $g(a, b, c) = a \lor b \lor c$.

Then, (L, \oplus, g) is a (2, 3)-semihyperring.

Example 5. Let $(R, +, \cdot)$ be a semihyperring and $b \in Z(R)$, this means for every $x \in R, x \cdot b = b \cdot x$. Now, we set $g(x_1^n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n \cdot b$. Then, (R, +, g) is a (2, n)-semihyperring.

Example 6.([6]) Let $R = Z_2 \times Z_3$. We define a hyperoperation + on R as follows:

$$(a,b) + (c,d) = \begin{cases} (0,Z_3) & \text{if } a+c=0\\ (1,Z_3) & \text{if } a+c=1\\ (Z_2,Z_3) & \text{if } a+c=2 \end{cases}$$

and define a ternary multiplication $g((x_1, y_1), (x_2, y_2), (x_3, y_3)) = (x, y)$ such that $x \equiv x_1 x_2 x_3 \pmod{2}$ and $y \equiv y_1 - y_2 + y_3 \pmod{3}$. Then, (R, +, g) is a (2, 3)-semihyperring.

Example 7. Let (G, \circ) be an abelian group. We define an *m*-ary hyperoperation f and (2n-1)-ary multiplication g on G in the following way:

$$f(x_1, \dots, x_m) = \bigcup_{i=1}^m \{x_i\}, \text{ for all } x_1^m \in R,$$
$$g(x_1^{2n-1}) = y_1 \circ y_2 \circ \dots \circ y_{2n-1}, \text{ where } y_i = \begin{cases} x_i & \text{if } i \text{ is odd} \\ \\ x_i^{-1} & \text{if } i \text{ is even} \end{cases}$$

Then, (G, f, g) is an (m, 2n - 1)-semihyperring.

Example 8.([6]) Let $G = (Z_{16}, +, \cdot)$ and $R = 2Z_{16}$. We define a binary hyperoperation and a ternary multiplication on R in the following way:

$$x \oplus y = \{x, y\}$$
 and $g(x, y, z) = x \cdot y \cdot z + 4.$

Then, g is associative, since for every $x_1^5 \in R$, we have

$$g(g(x_1^3), x_4^5) = g(x_1, g(x_2^4), x_5) = g(x_1^2, g(x_3^5)) = 4.$$

It is not difficult to see that (R, \oplus, g) is a (2, 3)-semihyperring.

Regular(strongly regular) relations play an important role in hyperstructure theory. Let ρ be an equivalence relation on an *n*-ary semihypergroup (S, f). H_{ρ} denotes the set of equivalence classes of ρ . We denote by $\overline{\rho}$ the relation defined on $\mathcal{P}^*(S)$ as follows. If $A, B \in \mathcal{P}^*(S)$, then

$$A \ \overline{\overline{\rho}} B \iff a \ \rho \ b$$
 for all, $a \in A, b \in B$.

It follows immediately that $\overline{\overline{\rho}}$ is symmetric and transitive. In general, $\overline{\overline{\rho}}$ is not reflexive. Also, we denote by $\overline{\rho}$ the relation defined on $\mathcal{P}^*(S)$ as follows. If $A, B \in \mathcal{P}^*(S)$, then

 $A \overline{\rho} B \iff$ for all $a \in A$, there exists $b \in B$ such that $a \rho b$ and for all $b \in B$, there exists $a \in A$ such that $a \rho b$.

Let (S, f) be an *n*-ary semihypergroup and ρ be an equivalence relation on S. Then, ρ is a regular relation if $a_i \rho b_i$ for all $1 \le i \le n$ then $f(a_1, \ldots, a_n) \overline{\rho} f(b_1, \ldots, b_n)$. Also, ρ is called a strongly regular relation if $a_i \rho b_i$ for all $1 \le i \le n$ then $f(a_1, \ldots, a_n) \overline{\rho} f(b_1, \ldots, b_n)$. By a regular (strongly regular) relation on an (m, n)semihyperring R we mean a regular (strongly regular) relations on (R, f) and (R, g). Mirvakili and Davyaz proved the next theorem:

Theorem 1.([23]) Let (R, f, g) be an (m, n)-semihyperring and the relation ρ be a regular(strongly regular) relation on (R, f, g). Then, the quotient $(R_{\rho}, f_{\rho}, g_{\rho})$ is an (m, n)-semihyperring((m, n)-semiring) under $f_{\rho}(\rho(x_1), \ldots, \rho(x_m)) = \rho(f(x_1^m))$ and $g_{\rho}(\rho(y_1), \ldots, \rho(y_n)) = \rho(g(y_1^n))$, for all x_1^m and y_1^n in R.

Theorem 2. Let (R, f, g) and (S, f', g') be two (m, n)-semihyperrings and φ : $R \longrightarrow S$ be a homomorphism. Then, $ker\varphi = \{(a, b) \in R \times R \mid \varphi(a) = \varphi(b)\}$ is a regular relation on R and there exists a unique one to one homomorphism ψ from $R_{ker\varphi}$ into S.

Proof. It is straightforward.

Corollary 3. Let (R, f, g) be an (m, n)-semihyperring and ρ, σ be two regular relations on R with $\rho \subseteq \sigma$. Then, $\sigma_{\rho} = \{(\rho(a), \rho(b)) \mid (a, b) \in \sigma\}$ is a regular relation on R_{ρ} and $(R_{\rho})_{(\sigma_{\rho})} \cong R_{\sigma}$.

2. Hyperideals of (m, n)-Semihyperrings

Let S be a non-empty subset of an (m, n)-semihyperring (R, f, g). If (S, f, g) is an (m, n)-semihyperring, then S is called a *sub-semihyperring* of R.

Definition 5. Let (R, f, g) be an (m, n)-semihyperring. By an (i, j)-center of R we mean the set

$$Z_{ij}(R) = \{ a \in R \mid f(x_1^{i-1}, a, x_i^{n-1}) = f(x_1^{j-1}, a, x_j^{n-1}), \text{ for } x_1^{n-1} \in R \}.$$

The set $Z(R) = \bigcap_{i=1}^{n} Z_{ij}(R) = \bigcap_{j=1}^{n} Z_{ij}(R)$ is called the *center* of *R*.

Proposition 6. Let (R, f, g) be an (m, n)-semihyperring. Then,

- (1) For every $i, j \in \{1, ..., n\}, Z_{ij} = Z_{ji}$.
- (2) If $a \in Z_{ij} \cap Z_{jk}$, then $a \in Z_{ik}$.
- (3) If $Z_{ij}(R)$ is non-empty, then it is a sub-semihyperring of R.
- (4) If Z(R) is non-empty, then it is a maximal commutative sub-semihyperring of R.

Proof. The proof is straightforward.

Definition 7. Let I be a non-empty subset of an (m, n)-semihyperring (R, f, g) and $1 \le i \le n$; we call I an (i)-hyperideal of R if

- (1) I is a sub-semihypergroup of the *m*-ary semihypergroup (R, f), i.e., (I, f) is an *m*-ary semigroup,
- (2) for every $x_1^n \in R$, $g(x_1^{i-1}, I, x_{i+1}^n) \subseteq I$.

Also, if for every $1 \le i \le n$, I is an (i)-hyperideal, then I is called a *hyperideal* of R.

If X is a subset of an (m, n)-semihyperring R, then $\langle X \rangle$ is the hyperideal generated by elements of X. Let A_1, \ldots, A_n be non-empty subsets of R. We set

$$\prod_{i=1}^{n} A_{i} = \{ f_{(k)}([g(a_{i1}^{in})]_{i=1}^{i=m_{k}}) \mid a_{ij} \in A_{j}, m_{k} = k(m-1)+1 \}.$$

Then, $\prod_{i=1}^{n} A_i$ called the *product* of A_i .

Lemma 8. Let R be an (m, n)-semihyperring. Then,

- (1) If I_1, \ldots, I_m are hyperideals of R, then $f(I_1^m)$ is a hyperideal of R.
- (2) If I_1, \ldots, I_m are subsets of R and there exists $1 \le j \le n$ such that I_j is a hyperideal of R and R is commutative, then $\prod_{i=1}^n I_i$ is a hyperideal of R.
- (3) If I_1, \ldots, I_n are hyperideals of R and $\bigcap_{i=1}^n I_i \neq \emptyset$, then $\bigcap_{i=1}^n I_i$ is a hyperideal of R and $< \prod_{i=1}^n I_i > \subseteq \bigcap_{i=1}^n I_i$.

(4) If I is a hyperideal of R and $a_2^n \in I$, then $f(I, a_2^n) = I$.

Proof. The proof is similar to the proof of Lemma 3.4 in [23].

An element $\omega \in R$ is called (i,j)-distinguished element of the (m, n)-semihyperring R if it satisfies $f(x_1^i, \omega, x_{i+1}^m) = \omega$ and $g(y_1^j, \omega, y_{j+1}^n) = \omega$, for all $x_1^m, y_1^n \in R$, where $1 \leq i \leq m$ and $1 \leq j \leq n$. An element $\omega \in R$ is called distinguished element of the (m, n)-semihyperring R if it is an (i, j)-distinguished for all $1 \leq i \leq m$ and $1 \leq j \leq n$. Every (m, n)-semihyperring can not contain two different distinguished elements. We shall always call " ω " the distinguished element of every (m, n)-semihyperring.

Theorem 9. Let R be an (m, n)-semihyperring and $\omega \in R$. Then, the following conditions are equivalent:

- (1) ω is a distinguished element of R.
- (2) ω is a (1,1)-distinguished element and an (n,n)-distinguished element of R.
- (3) ω is a (1, n)-distinguished element and an (n, 1)-distinguished element of R.
- (4) for some 1 < i < n, ω is an (i, 1)-distinguished element and an (i, n)-distinguished element of R.
- (5) for some 1 < j < n, ω is a (1, j)-distinguished element and an (n, j)-distinguished element of R.
- (6) for some $1 < i, j < n, \omega$ is an (i, j)-distinguished element of R.

Proof. $(1) \rightarrow (2)$ It is clear by using the definition.

 $(2) \rightarrow (3)$ It is straightforward.

(3) \rightarrow (4) We have $f(\omega, x_2^m) = \omega$, $g(y_1^{n-1}, \omega) = \omega$, $f(x_1^{m-1}, \omega) = \omega$ and $g(\omega, y_2^n) = \omega$, for every $x_1^m, y_1^n \in R$. Now, we have

 $(4) \to (5)$ Similar to the proof of $(3) \to (4)$, we obtain $g(x_1^j, \omega, x_{j+1}^m) = \omega$. Now, we have

$$f(\omega, x_2^m) = f(f(\overset{(m)}{\omega}), x_2^m)$$

= $f(\overset{(m-i)}{\omega}, f(\overset{(i)}{\omega}, x_2^{m-i+1}), x_{m-i+2}^m)$
= $f(\overset{(m-i)}{\omega}, \omega, x_{m-i+2}^m)$
...
= $f(\overset{(m)}{\omega}) = \omega.$

and

522

$$f(x_1^{m-1}, \omega) = f(x_1^{m-1}, f(\overset{(m)}{\omega}))$$

= $f(x_1^{m-i}, f(x_{m-i+1}^{m-1}, \overset{(m-i+1)}{\omega}), \overset{(i-1)}{\omega})$
= $f(x_1^{m-i}, \omega, \overset{(i-1)}{\omega})$
...
= $f(\overset{(m)}{\omega}) = \omega.$

 $(5) \rightarrow (6)$ The proof is similar to the proof of $(3) \rightarrow (4)$.

(6) \rightarrow (1) Let 1 < i < m and $f(x_1^{i-1}, \omega, x_{i+1}^m) = \omega$ for every $x_1^m \in R$. Now, for every $x_1^m \in R$ we have

$$\begin{aligned} f(x_1^{i-2}, \omega, x_i^m) &= f(x_1^{i-2}, f(\overset{(m)}{\omega}), x_{i+1}^m) \\ &= f(x_1^{i-2}, \omega, f(\overset{(m-1)}{\omega}, x_i), x_{i+1}^m) \\ &= f(x_1^{i-2}, \omega, \omega, x_{i+1}^m) \\ &= \omega. \end{aligned}$$

In the similar way, we obtain $f(x_1^i, \omega, x_{i+2}^m) = \omega$, for every $x_1^m \in R$. Also, in the similar way, for the *m*-ary operation *g*, we have $g(x_1^j, \omega, x_{j+2}^n) = \omega$ and $g(x_1^{i-1}, \omega, x_i^n) = \omega$. Hence, ω is an (h, k)-distinguished element when h = i-1, i, i+1and k = i - 1, i, i + 1.

If we repeat the above process we obtain ω is an (h, k)-distinguished element for every $h \in \{1, \ldots, m\}$ and $k \in \{1, \ldots, n\}$.

Definition 10. Let (R, f, g) be an (m, n)-semihyperring and I be a subset of R. We say that I is an (i,j)-hyperideal of R, where $1 \le i, j \le n$, if it satisfies:

- (1) $f(x_1^{i-1}, I, x_{i+1}^m) \subseteq I$, for all $x_1^n \in R$,
- (2) $g(y_1^{j-1}, I, y_{j+1}^n) \subseteq I$, for all $y_1^n \in R$.

If I is an (i, j)-hyperideal of R, for every $1 \le i, j \le n$, then we say that I is a 2-hyperideal of R. Indeed, a 2-hyperideal is a hyperideal of the m-ary semihypergroup (R, f) and the n-ary semigroup (R, g).

Lemma 11. Let R be an (m, n)-semihyperring and I_1^k be 2-hyperideals of R.

- (1) If $\bigcap_{i=1}^{k} I_i \neq \emptyset$ then $\bigcap_{i=1}^{k} I_i$ is a 2-hyperideal of the (m, n)-semihyperring R.
- (2) $\bigcup_{i=1}^{k} I_i$ is a 2-hyperideal of the (m, n)-semihyperring R.

Proof. The proof is straightforward.

We say that I is an (i, j)-distinguished hyperideal, where $1 \le i, j \le n$, if

(1) $f(x_1^{i-1}, I, x_{i+1}^m) = I$, for all $x_1^n \in R$,

(2) $g(y_1^{j-1}, I, y_{j+1}^n) = I$, for all $y_1^n \in R$.

Let I be an (i, j)-distinguished hyperideal of R, for every $1 \leq i, j \leq n$. Then, we say that I is a *distinguished hyperideal* of R. If I and J are two distinguished hyperideals, then it is clear that I = J.

Theorem 12. Let R be an (m, n)-semihyperring and I be a non-empty subset of R. Then, the following conditions are equivalent:

- (1) I is a distinguished hyperideal of R.
- (2) I is a (1,1)-distinguished hyperideal and an (n,n)-distinguished hyperideal of R.
- (3) I is a (1,n)-distinguished hyperideal and an (n,1)-distinguished hyperideal of R.
- (4) for some 1 < i < n, I is an (i, 1)-distinguished hyperideal and an (i, n)-distinguished hyperideal of R.
- (5) for some 1 < j < n, I is a (1, j)-distinguished hyperideal and an (n, j)-distinguished hyperideal of R.
- (7) for some 1 < i, j < n, I is an (i, j)-distinguished hyperideal of R.

Proof. The proof is similar to the proof of Theorem 9.

A 2-hyperideal I of an (m, n)-semihyperring (R, f, g) generates the following binary relation (*Rees relation*) on R: $a\rho_I b$ if and only if a = b or $(a \in I \text{ and } b \in I)$.

Lemma 13. Rees relation on an (m, n)-semihyperring (R, f, g) is a strongly regular relation.

Proof. Let $a, b, x_1^n \in \mathbb{R}$, $1 \leq i \leq n$ and $a\rho_I b$. If a = b, then $\rho(a) = \rho(b)$, and if $a, b \in I$, then $\rho(a) = \rho(b)$. Since $\rho(x_j) = x_j$ or $\rho(x_j) = I$, so

$$f(\rho(x_1),\ldots,\rho(x_{i-1}),\rho(a),\rho(x_{i+1}),\ldots,\rho(x_n))$$

and

$$f(\rho(x_1), \ldots, \rho(x_{i-1}), \rho(b), \rho(x_{i+1}), \ldots, \rho(x_n))$$

are same set and both are singleton or both are subsets of I. Since I is a 2-hyperideal, so

$$f(\rho(x_1),\ldots,\rho(x_{i-1}),\rho(a),\rho(x_{i+1}),\ldots,\rho(x_n))$$

$$\overline{\rho_I}f(\rho(x_1),\ldots,\rho(x_{i-1}),\rho(b),\rho(x_{i+1}),\ldots,\rho(x_n))$$

Therefore, ρ_I is a strongly regular relation.

For every $x \in I$, we have $\rho_I(x) = I$ and for every $x \in R-I$ we have $\rho_I(x) = \{x\}$. Now, we set $R_{\rho_I} = R/I = \{\rho(x) \mid x \in R\} = \{I\} \cup \{\{x\} \mid x \in R-I\}$. Then, we define

- (1) $F(\rho_I(x_1), \dots, \rho_I(x_m)) = \rho_I(f(x_1^m)),$
- (2) $G(\rho_I(y_1), \dots, \rho_I(y_n)) = \rho_I(g(y_1^n)).$

Lemma 14. (R/I, F, G) is an (m, n)-semihyperring and I is the distinguished element of R/I.

Proof. The proof is straightforward.

The (m, n)-semihyperring (R/I, F, G) is called the *Rees factor* (m, n)-semihyperring of R modulus I.

Lemma 15. We have $R/I \cong \{\omega\} \cup (R-I)$.

Proof. The proof is straightforward.

Proposition 16. Let (R, f, g) be an (m, n)-semihyperring, I be a 2-hyperideal and S be a sub-semihyperring of R. Then,

- (1) $I \cup S$ is a subsemihyperring of R and I forms a 2-hyperideal of $I \cup S$.
- (2) If $I \cap S \neq \emptyset$, then $I \cap S$ is a 2-hyperideal of the sub-semihyperring S.
- (3) If $I \cap S \neq \emptyset$, then $(I \cup S)/I \cong S/(I \cap S)$.

Proof. The proofs of (1) and (2) are straightforward. In order to prove (3), we have $(I \cup S)/I \cong ((I \cup S) - I) \cup \{\omega\} = (S - (S \cap I)) \cup \{\omega\} \cong S/(I \cap S).$

Proposition 17. Let (R, f, g) be an (m, n)-semihyperring. Let I be a 2-hyperideal of R and $g: I \longrightarrow R/I$ be the natural homomorphism. Then, g induces a one-to-one correspondence which preserves inclusion, which we also call g

$$g: K \longrightarrow K/I$$

from the set of the 2-hyperideals of R that contain I upon the set of the non-trivial 2-hyperideals of R/I. Moreover,

$$(R/I)/(K/I) \cong R/K.$$

Proof. Suppose that K is a 2-hyperideal of R such that $K \subseteq I$. Then, g(K) = K/I is a 2-hyperideal of g(R) = R/I. Now, if J is a 2-hyperideal of R/I, then $g^{-1}(J) = K$ is a 2-hyperideal of R which contains I, so that g(K) = J. Therefore, g induces a mapping from the first set of the statement onto the second. Also, g induces a one to one map from the first set onto the second set, because g(A) = g(B) implies A/I = B/I or A - I = B - I, and so A = B. Similarly, it is easy to see that g preserves the inclusion. Finally, we have

$$(R/I)/(K/I) \cong (R/I - K/I) \cup \{\omega\} \cong ((R - I) - (K - I)) \cup \{\omega\} \cong (R - K) \cup \{\omega\} \cong R/K.$$

Π

3. (m, n)-Semihyperring of Quotients

In [8], Davvaz and Salasi studied the hyperring of fractions (quotients). In [4], Darafsheh and Davvaz, defined the H_v -ring of fractions of a commutative hyperring. In [3], Crombez and Timm, proved that any commutative cancellative (n, m)-ring can be embedded into a unique (up to isomorphism) minimal (n, m)-field. Lee [17] proved (using the well-known procedure of embedding an integral domain into a field) that any commutative and cancellative (Ω, m) -ringoid A can be embedded into a quotient (Ω, m) -ringoid Q(A). This extends a result of G. Crombez and J. Timm [3].

Our aim in this section is to introduce (m, n)-semihyperring of quotients.

Let (R, f, g) be a commutative (m, n)-semihyperring with at least one cancellable element respect to g and let S be the set of all cancellable elements. Consider the set $R \times S^{n-1}$ of ordered pair $(a_1, (a_2^n))$. We introduce a relation in this set by defining

$$(a_1, (a_2^n)) \sim (b_1, (b_2^n)) \iff g(a_1, b_2^n) = g(b_1, a_2^n).$$

Lemma 18. The relation \sim is an equivalence relation on $R \times S^{n-1}$.

Proof. The relation is clearly reflexive and symmetric. Now, we suppose that

$$(a_1, (a_2^n)) \sim (b_1, (b_2^n))$$
 and $(b_1, (b_2^n)) \sim (c_1, (c_2^n))$.

Then, $g(a_1, b_2^n) = g(b_1, a_2^n)$ and $g(b_1, c_2^n) = g(c_1, b_2^n)$. In order to prove the transitivity, we have to show that $g(a_1, c_2^n) = g(c_1, a_2^n)$. We have

$$g(g(a_1, b_2^n), c_2^n) = g(g(b_1, a_2^n), c_2^n),$$
(*)

$$g(g(b_1, c_2^n), a_2^n) = g(g(c_1, b_2^n), a_2^n).$$
(**)

Since g is commutative, by (*) and (**) we obtain $g(g(a_1, b_2^n), c_2^n) = g(g(c_1, b_2^n), a_2^n)$. Thus, $g(g(a_1, c_2^n), b_2^n) = g(g(c_1, a_2^n), b_2^n)$. Since b_2^n are cancellable elements, we have $g(a_1, c_2^n) = g(c_1, a_2^n)$ which implies that the transitivity of \sim . \Box

We now note that the equivalence class of $(a_1, (a_2^n))$ by $\frac{a_1}{[a_2^n]}$. Also, we set $\frac{a_1}{[a_1^{1n}, a_{22}^{2n}, \dots, a_{m2}^{mn}]} := \frac{a_1}{[g(a_{12}^{m2}), g(a_{13}^{m3}), \dots, g(a_{1n}^{mn})]}$. Let $S^{-1}R$ denote the set of these equivalence classes. We define

$$F\left(\frac{a_1}{[a_{12}^{1n}]}, \dots, \frac{a_m}{[a_{m2}^{mn}]}\right) = \left\{x \mid x \in \frac{f(h(a_1, a_{22}^{mn}), \dots, h(a_m, a_{12}^{1n}, \dots, a_{(m-1)2}^{(m-1)n})}{[a_{12}^{1n}, \dots, a_{m2}^{mn}]}\right\}$$

and

$$G\left(\frac{a_1}{[a_{12}^{1n}]}, \dots, \frac{a_m}{[a_{m2}^{mn}]}\right) = \frac{g(a_1^n)}{[a_{12}^{1n}, \dots, a_{m2}^{mn}]} ,$$

In the definition of F, if l = k(m-1) + 1, then *l*-ary hyperoperation h given by

$$h(x_1^{k(m-1)+1}) = \underbrace{f(f(\cdots(f(f(x_1^m), x_{m+1}^{2m-1}), \cdots), x_{(k-1)(m-1)+2}^{k(m-1)+1})}_{k}$$

S. Mirvakili and B. Davvaz

will be denoted by $f_{(k)}$. It is not difficult to see that F and G are well-defined.

Theorem 19. If (R, f, g) is any commutative (m, n)-semihyperring with at least one cancellable element, then $(S^{-1}R, F, G)$ is an (m, n)-semihyperring of quotients for R with respect to S.

Proof. The proof is straightforward.

Now, we say that a commutative (m, n)-semihyperring (R, f, g) has a multiplicative identity element e, if $g(x, \stackrel{(n-1)}{e}) = x$ for all $x \in R$. We call (R, f, g) is a unitary commutative (m, n)-semihyperring.

Example 9. Let $R = Z_2$ and for all $x, y, z \in R$ we define a ternary hyperoperation f(x, y, z) = R and a ternary operation g(x, y, z) = x + y + z + 1 then every element is cancellable but (R, f, g) has not a multiplicative identity element.

In this section (R, f, g, e) is a unitary commutative (m, n)-semihyperring with a multiplicative identity element e.

Lemma 20. In every (m, n)-semihyperring (R, f, g, e) we have $S \neq \emptyset$.

Proof. If
$$g(x, \stackrel{(n-1)}{e}) = g(y, \stackrel{(n-1)}{e})$$
 then $x = y$. So $e \in S$.

Let (R, f, g, e) be a (m, n)-semihyperring. The map $\varphi_e : R \longrightarrow S^{-1}R$ given by $\varphi_e = \frac{a}{\lfloor n-1 \rfloor}$ is a one to one homomorphism.

Theorem 21. Let (R, f, g, e) and (R', f', g', e') be two (m, n)-semihyperrings. Let S be the set of all cancellable elements of R and let $\alpha : R \longrightarrow R'$ be a homomorphism of (m, n)-semihyperrings such that $\alpha(s)$ is a cancellable element of R' for all $s \in S$ and $\varphi(e) = e'$. Then, α induces a homomorphism $\overline{\alpha} : S^{-1}R \longrightarrow \alpha(S)^{-1}R'$ such that $\overline{\alpha}\varphi_e = \varphi_{e'}\alpha$.

Proof. We can verify that the map $\overline{\alpha}: S^{-1}R \longrightarrow \alpha(S)^{-1}R'$ given by

$$\overline{\alpha}(\frac{a_1}{[a_2,\ldots,a_n]}) = \frac{\alpha(a_1)}{[\alpha(a_2),\ldots,\alpha(a_n)]}$$

is a well-defined homomorphism of (m, n)-semihyperrings such that

$$\overline{\alpha}\varphi_e(a) = \overline{\alpha}(\frac{a}{[\binom{(n-1)}{e}]})$$
$$= \frac{\alpha(a)}{[\binom{(n-1)}{e'}]}$$
$$= \varphi_{e'}\alpha(a).$$

Lemma 22. Let I be a hyperideal of R, then the set

$$S^{-1}I = \{\frac{a}{[a_2, \dots, a_n]} \mid a \in I, a_2^n \in S\}$$

is a hyperideal of $S^{-1}R$.

Proof. The proof is straightforward.

Lemma 23. Let I, J, I_1^m, J_1^n be hyperideals of R. Then,

- (1) $S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$,
- (2) $S^{-1}f(I_1,\ldots,I_m) = F(S^{-1}I_1,\ldots,S^{-1}I_m),$
- (3) $S^{-1}g(J_1,\ldots,J_n) = G(S^{-1}J_1,\ldots,S^{-1}J_n).$

Proof. The proof is is straightforward.

Theorem 24. Let (R, f, g, e) be an (m, n)-semihyperring and I be a hyperideal of R. Then, $S \cap I \neq \emptyset$ if and only if $S^{-1}I = S^{-1}R$.

Proof. If $u \in S \cap I$, then $\frac{e}{[n-1]} = \frac{g(n)}{[n-1]} = \frac{g(e, u)}{[n-1]} \in S^{-1}I$. Now, for every $\frac{a_1}{[a_2,n]} \in S^{-1}R$ we have

$$\frac{a_1}{[a_2^n]} = \frac{g(a_1, \stackrel{(n-1)}{e})}{[a_2^n]} = G\left(\frac{a_1}{[a_2^n]}, \frac{e}{[\stackrel{(n-1)}{e}]}, \dots, \frac{e}{[\stackrel{(n-1)}{e}]}\right) \in S^{-1}I$$

and this proves $S^{-1}R \subseteq S^{-1}I$.

Conversely, suppose that $S^{-1}I = S^{-1}R$. If we consider the natural homomorphism $\varphi_e : R \longrightarrow S^{-1}R$, then $\varphi_e(e) = \frac{e}{[\binom{n-1}{e}]}$. On the other hand, $\varphi_e(e) \in S^{-1}R$, consequently $\varphi_e(e) \in S^{-1}I$ and so $\varphi_S(e) = \frac{ae}{[a_2^n]}$ for some $ae \in I$ and $a_2^n \in S$. Now, we have $\frac{e}{[\binom{n-1}{e}]} = \frac{a}{[a_2^n]}$. Thus, $g(e, a_2^n) = g(a, \binom{n-1}{e}) = a \in I \cap S$. Therefore, we obtain $I \cap S \neq \emptyset$.

Theorem 25. Let I be a hyperideal of R. Then,

- (1) $I \subseteq \varphi_e^{-1}(S^{-1}I),$
- (2) if $I = \varphi_e^{-1}(J)$ for some hyperideal J in $S^{-1}R$, then $S^{-1}I = J$.

Proof. (1) If $a \in I$, then $\varphi_e(a) = \frac{a}{[e^{(n-1)}]} \in S^{-1}I$. Therefore, $I \subseteq \varphi_e^{-1}(S^{-1}I)$.

(2) Since $I = \varphi_e^{-1}(J)$, every element of $S^{-1}I$ is of the form $\frac{a}{[a_2^n]}$ with $\varphi_e(a) \in J$. Thus,

$$\frac{a}{[a_2^n]} = \frac{g(e,a, \stackrel{(n-2)}{e})}{[a_2^n]} \\
= G\left(\frac{e}{[a_2^n]}, \frac{a}{[\stackrel{(n-1)}{e}]}, \frac{e}{[\stackrel{(n-1)}{e}]}, \dots, \frac{e}{[\stackrel{(n-1)}{e}]}\right) \\
= G\left(\frac{e}{[a_2^n]}, \varphi_e(a), \varphi_e(e), \dots, \varphi_e(e)\right) \\
\in J.$$

Therefore, $S^{-1}I \subseteq J$. Conversely, if $\frac{a}{[a_2^n]} \in J$, then

$$\varphi_e(a) = \frac{a}{\binom{(n-1)}{e}} = G\left(\frac{a}{\lfloor a_2^n \rfloor}, \frac{a_2}{\lfloor n-1 \rfloor}, \dots, \frac{a_n}{\lfloor n-1 \rfloor}\right) \in J,$$

whence $a \in \varphi_e^{-1}(J) = I$. Thus $\frac{a}{[a_n^n]} \in S^{-1}I$ and hence $J \subseteq S^{-1}I$.

Now, we will prove some theorems concerning a congruence relation. Let ρ be a congruence relation on semigroup (R, g), Then, we have

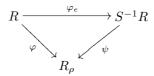
Lemma 26. Let (R, f, g, e) be an (m, n)-semihyperring. Then, for every $a \in S$, $\rho(a)$ is cancellable in R_{ρ} .

Proof. Since $e \in R$, then $\rho(e) \in R_{\rho}$. Now, for every $\rho(x) \in R_{\rho}$, we have $g_{\rho}(\rho(x), \rho(e))$, $\ldots, \rho(e) = \rho(x)$, i.e., $\rho(e)$ is a neutral element of the (m, n)-semihyperring R_{ρ} . On the other hand, suppose that $a_2^n \in S$ such that

$$g_{\rho}(\rho(a_2), \dots, \rho(a_i), \rho(x), \rho(a_{i+1}), \dots, \rho(a_n)) = g_{\rho}(\rho(a_2), \dots, \rho(a_i), \rho(y), \rho(a_{i+1}), \dots, \rho(a_n)).$$

Then, $\rho(g(a_2^i, x, a_{i+1}^n)) = \rho(g(a_2^i, y, a_{i+1}^n))$ or $g(a_2^i, x, a_{i+1}^n) \rho g(a_2^i, y, a_{i+1}^n)$. Since $e\rho e^{i\theta}$ and ρ is a congruence, $g(g(a_2^i, x, a_{i+1}^n), e, \dots, e) = g(g(a_2^i, y, a_{i+1}^n), e, \dots, e)$. Thus, $g(a_2^i, x, a_{i+1}^n) = g(a_2^i, y, a_{i+1}^n)$ which implies that x = y. \Box

Theorem 27. There exists a homomorphism $\psi: S^{-1}R \longrightarrow R_{\rho}$ such that $\psi\varphi_e = \varphi$, *i.e.*, the following diagram is commutative.



Proof. We define $\psi : S^{-1}R \longrightarrow R_{\rho}$ by setting $\psi\left(\frac{a_1}{[a_2^n]}\right) = g_{\rho}(\rho(a_1), \dots, \rho(a_n)) =$ $\rho(g(a_1^n))$. First, we show that ψ is well-defined. If $\frac{a_1}{[a_2^n]} = \frac{b_1}{[b_2^n]}$, then $g(a_1^n) =$ $g(b_1^n)$ and so $g_{\rho}(\rho(a_1),\ldots,\rho(a_n)) = g_{\rho}(\rho(b_1),\ldots,\rho(b_n))$. Thus, ψ is well-defined. A routine calculation shows that ψ is a homomorphism. Finally, we have

$$\psi\varphi_{e}(a) = \psi\left(\frac{a}{[n-1] e^{(n-1)}}\right) = g_{\rho}(\rho(g(a, {n-1 \choose e})), \rho(e), \dots, \rho(e))$$
$$= \rho(g(g(a, {n-1 \choose e}), {n-1 \choose e})) = \rho(a) = \varphi(a).$$

528

References

- [1] S. M. Anvariyeh, S. Mirvakili and B. Davvaz, Fundamental relation on (m, n)-ary hypermodules on (m, n)-ary hyperring, ARS Combinatoria, **94**(2010), 273-288.
- [2] G. Crombez, On (n, m)-rings, Abh. Math. Semin. Univ. Hamburg, **37**(1972), 180-199.
- [3] G. Crombez and J. Timm, On (n, m)-quotient rings, Abh. Math. Semin. Univ. Hamburg, 37(1972), 200-203.
- [4] M. R. Darafsheh and B. Davvaz, H_v-ring of fractions, Ital. J. Pure Appl. Math., 5(1999), 25-34.
- [5] B. Davvaz, Approximations in n-ary algebraic systems, Soft Computing, 12(2008), 409-418.
- B. Davvaz, S. Mirvakili, *Hyperideals in ternary semihyperrings*, Bulletin of the Allahabad Mathematical Society (BAMS), 27(2)(2012), 159-185.
- [7] B. Davvaz, V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, USA, 2007.
- [8] B. Davvaz and A. Salasi, A realization of hyperrings, Comm. Algebra, 34 (2006), 4389-4400.
- [9] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Tec., Tran. A., 30(2006), 165-174.
- [10] B. Davvaz, W. A. Dudek and S. Mirvakili, Neutral elements, fundamental relations and n-ary hypersemigroups, International Journal of Algebra and Computation, 19(2009), 567-583.
- B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Comm. Algebra, 37(2009), 1248-1263.
- [12] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29(1928), 1-19.
- [13] W. A. Dudek On the divisibility theory in (m, n)-rings, Demonstratio Math., 14(1981), 19-32.
- [14] M. Ghadiri, B. N. Waphare and B. Davvaz, n-Ary H_v-Structures, Southeast Asian Bulletin of Mathematics, 34(2010), 243-255.
- [15] E. Kasner, An extension of the group concept, Bull. Amer. Math. Soc., 10(1904), 290-291.
- [16] M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci., 2(1983), 307-312.
- [17] S.-M. Lee, On the quotient (Ω, m)-ringoids, Publ. Inst. Math. (Beograd) (N. S.), 46(60)(1989), 20-24.
- [18] V. Leoreanu-Fotea, Several types of n-ary subhypergroups Ital. J. Pure Appl. Math., 23(2008), 261-274.
- [19] V. Leoreanu-Fotea, n-ary canonical hypergroups, Ital. J. Pure Appl. Math., 24(2008), 247-254.
- [20] V. Leoreanu-Fotea and B. Davvaz, *Join n-spaces and lattices*, Journal Multiple-valued Logic and Soft Computing, 15(2009), 421-432.

- [21] V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, Information Sciences, 178(2008), 4114-4124.
- [22] F. Marty, Sur une generalization de la notation de grouse 8th Congress, Math. Scandianaves, Stockholm, 1934, pp. 45-49.
- [23] S. Mirvakili and B. Davvaz, Relations on Krasner (m,n)-hyperrings, European J. Combin., 31(2010), 790-802.
- [24] J. Mittas, Hypergroupes canoniques, Math. Balkanica, Beograd, 2(1972), 165-179.
- [25] E. L. Post, *Polyadic groups*, Trans. Amer. Math. Soc., 48(1940), 208-350.
- [26] S. A. Rusakov, Some applications of n-ary group theory, Belaruskaya navuka, Minsk, 1998.