KYUNGPOOK Math. J. 55(2015), 541-548 http://dx.doi.org/10.5666/KMJ.2015.55.3.541 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Quasi-Normal Relations - a New Class of Relations

DANIEL ABRAHAM ROMANO

Faculty of Education Bijeljina, East Sarajevo Univestity, Bijeljina 76300, Semberski ratari street b. b., Bosnia and Herzegobina e-mail: bato49@hotmail.com

ABSTRACT. In this paper, concepts of quasi-normal and dually quasi-normal relations are introduced. Characterizations of these relations are obtained. In addition, particularly we show that the anti-order relation $\notin (= \leq^C)$ is a (dually) quasi-normal relation if and only if the partially ordered set (X, \leq) is an anti-chain.

1. Introduction and Preliminaries

The regularity of binary relations was first characterized by Zareckii ([9],[10]). Further criteria for regularity were given by Hardy and Petrich ([3]), Markowsky ([7]), Schein ([8]) and Xu Xiao-quan and Liu Yingming ([11]) (see also [1] and [2]). The concepts of conjugative relations, dually conjugative relations and dually normal relations were introduced by Guanghao Jiang and Luoshan Xu ([4], [5]), and a characterization of normal relations was introduced and analyzed by Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen ([6]). In this paper, we introduce and analyze two new classes of relations in sets - class of quasi-normal relations and class of dually quasi-normal relations on sets.

Notions and notations which aren't explicitly exposed but are used in this article, readers can find them from texts [3] and [11], for an example.

For a set X, we call ρ a binary relation on X, if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ denote the set of all binary relations on X. For $\alpha, \beta \in \mathcal{B}(X)$, we define

$$\beta \circ \alpha = \{ (x, z) \in X \times X : (\exists y \in X) ((x, y) \in \alpha \land (y, z) \in \beta) \}.$$

The relation $\beta \circ \alpha$ is called the composition of α and β . It is well known that $(\mathcal{B}(X), \circ)$ is a semigroup. For a binary relation α on a set X, we define $\alpha^{-1} = \{(x, y) \in X \times X : (y, x) \in \alpha\}$ and $\alpha^{C} = (X \times X) \setminus \alpha$.

Let A and B be subsets of X. For $\alpha \in \mathcal{B}(X)$, we set

Received June 19, 2014; revised October 31, 2014; accepted November 27, 2014. 2010 Mathematics Subject Classification: 20M20, 03E20, 06B11.

541

Key words and phrases: relations, quasi-normal relations, dually quasi-normal relations.

 $A\alpha = \{y \in X : (\exists a \in A)((a, y) \in \alpha)\} \text{ and } \alpha B = \{x \in X : (\exists b \in B)((x, b) \in \alpha)\}.$

Specially, we put $a\alpha$ instead of $\{a\}\alpha$ and αb instead of $\alpha\{b\}$.

The following classes of elements in the semigroup $\mathcal{B}(X)$ have been investigated: - normal ([5]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ (\alpha^C)^{-1}.$$

- dually normal ([4]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha.$$

- conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha^{-1} \circ \beta \circ \alpha.$$

- dually conjugative ([3]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ \alpha^{-1}.$$

Put $\alpha^1 = \alpha$. It is easy to see that $(\alpha^{-1})^C = (\alpha^C)^{-1}$ holds. Previous description gives equality

$$\alpha = (\alpha^a)^i \circ \beta \circ (\alpha^b)^j$$

for some $\beta \in \mathcal{B}(X)$ where $i, j \in \{-1, 1\}$ and $a, b \in \{1, C\}$. We should investigate all other possibilities since some of possibilities given in the previous equation have been investigated.

Diverse descriptions of regular elements of $\mathcal{B}(X)$ can be found in [7], [8], and [9]. For any $\alpha \in \mathcal{B}(X)$, Zaretskii ([9], Section 3.2) (See, also, paper [3]) introduced the following relation in his study of regular elements of $\mathcal{B}(X)$

$$\alpha^+ = \{ (x, y) \in X \times X : \alpha \circ \{ (x, y) \} \circ \alpha \subseteq \alpha \}.$$

Schein in [8], Theorem 1, proved that $\alpha^+ = (\alpha^{-1} \circ \alpha^C \circ \alpha^{-1})^C$ is the maximal element in the family of all elements $\beta \in \mathcal{B}(X)$ such that $\alpha \circ \beta \circ \alpha \subseteq \alpha$.

2. Quasi-Normal and Dually Quasi-Normal Relations

In the following definition we introduce two new classes of elements in $\mathcal{B}(X)$.

Definition 2.1. (a) For relation $\alpha \in \mathcal{B}(X)$ we say that it is a *quasi-normal* relation on X if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha^C \circ \beta \circ (\alpha^C)^{-1}.$$

542

:

(b) For relation $\alpha \in \mathcal{B}(X)$ we say that it is a *dually quasi-normal* relation on X if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha^C.$$

Remark 2.1. The family of quasi-normal relations is not empty. Let $\alpha \in \mathcal{B}(X)$ be a relation such that $\alpha^C \circ (\alpha^C)^{-1} = Id_X$. Then, we have $\alpha = Id_X \circ \alpha \circ Id_X = (\alpha^C \circ (\alpha^C)^{-1}) \circ \alpha \circ (\alpha^C \circ (\alpha^C)^{-1}) =$

$$\alpha^C \circ ((\alpha^C)^{-1} \circ \alpha \circ \alpha^C) \circ (\alpha^C)^{-1} = \alpha^C \circ \beta \circ (\alpha^C)^{-1}.$$

So, such relation α is a quasi-normal relation on X. Analogously, for relation $\alpha \in \mathcal{B}(X)$ such that $(\alpha^C)^{-1} \circ \alpha^C = Id_X$, we have

$$\alpha = Id_X \circ \alpha \circ Id_X = ((\alpha^C)^{-1} \circ \alpha^C) \circ \alpha \circ ((\alpha^C)^{-1} \circ \alpha^C) = (\alpha^C)^{-1} \circ (\alpha^C \circ \alpha \circ (\alpha^C)^{-1}) \circ \alpha^C = (\alpha^C)^{-1} \circ \beta \circ \alpha^C.$$

Therefore, this relation α is a dually quasi-normal relation. So, the family of dually quasi-normal is not empty, either.

Particulary, for the relation $\nabla = (Id_X)^C$, since we have

$$(\nabla^C)^{-1} \circ \nabla^C = Id_X \circ Id_X = Id_X = \nabla^C \circ (\nabla^C)^{-1},$$

we conclude that it is a quasi-normal relation on X and it is a dually quasi-normal relation on X as well.

In following proposition we give a connection between quasi-normal and dually quasi-normal relations.

Proposition 2.1. Relation α^{-1} is a dually quasi-normal relation on X if and only if α is a quasi-normal relation on X.

Proof. Let α be a quasi-normal relation on set X. Then there exists a relation β on X such that $\alpha = \alpha^C \circ \beta \circ (\alpha^C)^{-1}$. Thus,

$$\alpha^{-1} = (\alpha^C \circ \beta \circ (\alpha^C)^{-1})^{-1} = ((\alpha^{-1})^C)^{-1} \circ \beta^{-1} \circ (\alpha^{-1})^C.$$

So, the relation α^{-1} is a dually quasi-normal if α is a quasi-normal relation. The second statement we demonstrate by analogy of the previous statement. \Box

Our second proposition is an adaptation of Schein's concept exposed in [8], Theorem 1 (See, also, [2], Lemma 1.) for our needs.

Theorem 2.1. For a binary relation $\alpha \in \mathcal{B}(X)$, relation

$$\alpha^* = ((\alpha^C)^{-1} \circ \alpha^C \circ \alpha^C)^C$$

is the maximal element in the family of all relation $\beta \in \mathfrak{B}(X)$ such that

$$\alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha.$$

Proof. First, remember ourself that

$$max\{\beta \in \mathfrak{B}(X): \alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha\} = \cup\{\beta \in \mathfrak{B}(X): \alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha\}.$$

Let $\beta \in B(X)$ be an arbitrary relation such that $\alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha$. We will prove that $\beta \subseteq \alpha^*$. If not, there is $(x, y) \in \beta$ such that $\neg((x, y) \in \alpha^*)$. The last gives:

$$\begin{split} (x,y) &\in (\alpha^C)^{-1} \circ \alpha^C \circ \alpha^C \Longleftrightarrow \\ & (\exists u, v \in X)((x,u) \in \alpha^C \land (u,v) \in \alpha^C \land (v,y) \in (\alpha^C)^{-1}) \Leftrightarrow \\ & (\exists u, v \in X)((u,x) \in (\alpha^C)^{-1} \land (u,v) \in \alpha^C \land (y,v) \in \alpha^C) \Longrightarrow \\ & (\exists u, v \in X)((u,x) \in (\alpha^C)^{-1} \land (x,y) \in \beta \land (y,v) \in \alpha^C \land (u,v) \in \alpha^C) \Longrightarrow \\ & (\exists u, v) \in X)((u,v) \in \alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha \land (u,v) \in \alpha^C). \end{split}$$

We got a contradiction. So, must be $\beta \subseteq \alpha^*$.

On the other hand, we should prove that

$$\alpha^C \circ \alpha^* \circ (\alpha^C)^{-1} \subseteq \alpha.$$

Let $(x,y) \in \alpha^C \circ \alpha^* \circ (\alpha^C)^{-1}$ be an arbitrary element. Then, there are elements $u, v \in X$ such that $(x, u) \in (\alpha^C)^{-1}$, $(u, v) \in \alpha^*$ and $(v, y) \in \alpha^C$. So, from

$$(x,u)\in (\alpha^C)^{-1},\, \neg((u,v)\in (\alpha^C)^{-1}\circ\alpha^C\circ\alpha^C),\, (v,y)\in\alpha^C,$$

we have $\neg((x, y) \in \alpha^C)$. Suppose that $(x, y) \in \alpha^C$. Then, we have $(u, v) \in (\alpha^C)^{-1} \circ \alpha^C \circ \alpha^C$, which is impossible. Hence, we have $(x, y) \in \alpha$ and, therefore, $\alpha^C \circ \alpha^* \circ (\alpha^C)^{-1} \subseteq \alpha$.

Finally, we conclude that α^* is the maximal element of the family of all relations $\beta \in \mathcal{B}(X)$ such that $\alpha^C \circ \beta \circ (\alpha^C)^{-1} \subseteq \alpha$.

We have the following proposition by dual process to previous theorem:

Theorem 2.2. For a binary relation $\alpha \in \mathcal{B}(X)$, relation

$$\alpha_* = (\alpha^C \circ \alpha^C \circ (\alpha^C)^{-1})^C$$

is the maximal element in the family of all relation $\beta \in \mathfrak{B}(X)$ such that

$$(\alpha^C)^{-1} \circ \beta \circ \alpha^C \subseteq \alpha.$$

Some properties of relations α_* and α^* and connection between them are given in the following proposition.

Proposition 2.2. For relation
$$\alpha \in \mathcal{B}(X)$$
 we have:
(a) $\alpha^* = \{(x, y) \in X \times X : \alpha^C \circ \{(x, y)\} \circ (\alpha^C)^{-1} \subseteq \alpha\}$
 $= \{(x, y) \in X \times X : x\alpha^C \times y\alpha^C \subseteq \alpha\}.$
(b) $\alpha_* = \{(x, y) \in X \times X : (\alpha^C)^{-1} \circ \{(x, y)\} \circ \alpha^C \subseteq \alpha\}$
 $= \{(x, y) \in X \times X : \alpha^C x \times \alpha^C y \subseteq \alpha\}.$

(c) $(\alpha^*)^{-1} = (\alpha^{-1})_*;$ (d) $(\alpha_*)^{-1} = (\alpha^{-1})^*.$ *Proof.* (a) By Theorem 2.1, it is straightforward to show that

$$\alpha^* = \{(x,y) \in X \times X : \alpha^C \circ \{(x,y)\} \circ (\alpha^C)^{-1} \subseteq \alpha\}.$$

Furthermore, we have

$$\begin{split} (u,v) &\in \alpha^C \circ \{(x,y)\} \circ (\alpha^C)^{-1} \Longleftrightarrow (u,x) \in (\alpha^C)^{-1} \wedge (y,v) \in \alpha^C \\ &\iff (x,u) \in \alpha^C \wedge (y,v) \in \alpha^C \\ &\iff u \in x \alpha^C \wedge v \in y \alpha^C \\ &\iff (u,v) \in x \alpha^C \times y \alpha^C. \end{split}$$

(b) Also, without difficulty, we can prove that $\begin{aligned}
\alpha_* &= \{(x,y) \in X \times X : (\alpha^C)^{-1} \circ \{(x,y)\} \circ \alpha^C \subseteq \alpha\} \\
&= \{(x,y) \in X \times X : \alpha^C x \times \alpha^C y \subseteq \alpha\} \\
\text{holds.}
\end{aligned}$ (c) $(\alpha^*)^{-1} &= \{(x,y) \in X \times X : x\alpha^C \times y\alpha^C \subseteq \alpha\}^{-1} \\
&= \{(y,x) \in X \times X : x\alpha^C \times y\alpha^C \subseteq \alpha\} \\
&= \{(x,y) \in X \times X : y\alpha^C \times x\alpha^C \subseteq \alpha\} \\
&= \{(x,y) \in X \times X : x\alpha^C \times y\alpha^C \subseteq \alpha^{-1}\} \\
&= \{(x,y) \in X \times X : (\alpha^C)^{-1}x \times (\alpha^C)^{-1}y \subseteq \alpha^{-1}\} \\
&= \{(x,y) \in X \times X : (\alpha^{-1})^C x \times (\alpha^{-1})^C y \subseteq \alpha^{-1}\} \\
&= (\alpha^{-1})_* .
\end{aligned}$

(d) The proof of this proposition can be given analogically by previous assertion (c). $\hfill \Box$

In the following proposition we give an essential characterization of dually quasinormal relations. It is our adaptation of concept exposed in [3], Theorem 7.2.

Theorem 2.3. For a binary relation α on a set X, the following conditions are equivalent:

- (1) α is a dually quasi-normal relation.
- (2) For all $x, y \in X$, if $(x, y) \in \alpha$, there exists $u, v \in X$ such that:
 - (a) $(x, u) \in \alpha^C \land (y, v) \in \alpha^C$

(b)
$$(\forall s, t \in X)((s, u) \in \alpha^C \land (t, v) \in \alpha^C \Longrightarrow (s, t) \in \alpha).$$

(3)
$$\alpha \subseteq (\alpha^C)^{-1} \circ \alpha_* \circ \alpha^C$$
.

Proof. (1) \Longrightarrow (2). Let α be a dually quasi-normal relation, i.e. let there exist a relation β such that $\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha^C$. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that

$$(x, u) \in \alpha^C, (u, v) \in \beta, (v, y) \in (\alpha^C)^{-1}.$$

From previous, it follows that there exist elements $u, v \in X$ such that $(x, u) \in \alpha^C$ and $(y, v) \in \alpha^C$. This proves condition (a). Now we check the condition (b). Let $s, t \in X$ be arbitrary elements such that $(s, u) \in \alpha^C$ and $(t, v) \in \alpha^C$. Now from $(s, u) \in \alpha^C$, $(u, v) \in \beta$ and $(v, t) \in (\alpha^C)^{-1}$ follows $(s, t) \in (\alpha^C)^{-1} \circ \beta \circ \alpha^C = \alpha$. (2) \Longrightarrow (1). Let us define a binary relation

$$\alpha' = \{(u, v) \in X \times X : (\forall s, t \in X) ((s, u) \in \alpha^C \land (t, v) \in \alpha^C \Longrightarrow (s, t) \in \alpha)\}$$

and show that $\alpha^C \circ \alpha' \circ (\alpha^C)^{-1} = \alpha$ is valid. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that the conditions (a) and (b) hold. We have $(u, v) \in \alpha'$ by definition of relation α' .

Further, from $(x, u) \in \alpha^C$, $(u, v) \in \alpha'$ and $(v, y) \in (\alpha^C)^{-1}$ follows $(x, y) \in (\alpha^C)^{-1} \circ \alpha' \circ \alpha^C$. Hence, we have $\alpha \subseteq (\alpha^C)^{-1} \circ \alpha' \circ \alpha^C$. Contrary, let $(x, y) \in (\alpha^C)^{-1} \circ \alpha' \circ \alpha^C$ be an arbitrary pair. There exist elements $u, v \in X$ such that $(x, u) \in \alpha^C$, $(u, v) \in \alpha'$ and $(v, y) \in (\alpha^C)^{-1}$. From previous we have $(x, u) \in \alpha^C$ and $(y, v) \in \alpha^C$. Hence, by definition of relation α' , follows $(x, y) \in \alpha$ since $(u, v) \in \alpha'$. Therefore, $(\alpha^C)^{-1} \circ \alpha' \circ \alpha^C \subseteq \alpha$. So, the relation α is a dually quasi-normal relation on X since there exists a relation α' such that $(\alpha^C)^{-1} \circ \alpha' \circ \alpha^C = \alpha$.

(1) \iff (3). Let α be a dually quasi-normal relation. Then there is a relation β such that $\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha^C$. Since $\alpha_* = \bigcup \{\beta \in \mathcal{B}(X) : (\alpha^C)^{-1} \circ \beta \circ \alpha^C \subseteq \alpha\}$, we have $\beta \subseteq \alpha_*$ and $\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha^C \subseteq (\alpha^C)^{-1} \circ \alpha_* \circ \alpha^C$. Contrary, let $\alpha \subseteq (\alpha^C)^{-1} \circ \alpha_* \circ \alpha^C$, for a relation α . Then, we have $\alpha \subseteq (\alpha^C)^{-1} \circ \alpha_* \circ \alpha^C \subseteq \alpha$. So, the relation α is a dually quasi-normal relation on set X.

Corollary 2.1. Let (X, \leq) be a poset. Relation \leq^C is a dually quasi-normal relation on X if and only if (X, \leq) is an anti-chain.

Proof. Let \leq^C be a dually quasi-normal relation on set X, and let $x, y \in X$ be elements such that $x \leq^C y$. Then, by previous theorem, there exist elements $u, v \in X$ such that:

(a) $x \leq u \land y \leq v;$

(b) $(\forall s, t \in X)((s \le u \land t \le v) \Longrightarrow s \le^C t).$

Let z be an arbitrary element and if we put z = s = t in formula (b) we have

$$(z \le u \land z \le v) \Longrightarrow z \le^C z,$$

which is a contradiction. Hence $\neg(z \leq u \land z \leq v)$, it follows

2

$$z \leq^C u \lor z \leq^C v.$$

However, one can observe that these conditions are satisfied only for the partially ordered sets witch are anti-chain. Indeed, let X have comparable elements, for example, y < x. Then, $x \leq^C y$. If for elements $u, v \in X$ the following $u \geq x$ and $v \geq y$ hold, then $y \leq u \wedge y \leq v$. Therefore, there exists z in X such that $z \leq u \wedge z \leq v$ (namely, z = y). It contradicts to the condition (b). So, there is no different comparable elements in X.

Contrary, let $x,y\in X$ be arbitrary elements such that $x\leq^C y.$ There exist elements $u,v\in X$ such that

(a') $x \leq u \land y \leq v$ and

(b') $(\forall z \in X) (z \leq^C u \lor z \leq^C z).$

Let $s, t \in X$ be arbitrary elements such that $s \leq u$ and $t \leq v$. At the second hand, from proposition (b'), for z = s, in this case, $s \leq^{C} u \lor s \leq^{C} v$, since the second option $s \leq^{C} u$ is impossible, the following is $s \leq^{C} v$. Thus, we have $s \leq^{C} t \lor t \leq^{C} v$. Since the second option is also impossible, we have to have $s \leq^{C} t$. So, elements u and v satisfy condition (b) of Theorem 3.1. So, the relation \leq^{C} is a dually quasi-normal relation.

Remark 2.2. Corollary 2.1 can be also verified as follows:

Assume first that the relation \leq^C is quasi-normal. It means $\leq^C = \leq^{-1} \circ \beta \circ \leq$ for a relation β . If $x, y \in X$ with x < y then $(y, x) \in \leq^C$, and so the previous equation implies $x \leq c$ and $d \leq^{-1} y$ for some $c, d \in X$ such that $(c, d) \in \beta$. Hence $x \leq c\beta d \leq^{-1} x$ follows since $d \leq^{-1} y$ and x < y. By the above equation, we deduce $(x, x) \in \leq^C$ which contradicts reflexivity of \leq . This shows that there are no elements $x, y \in X$ with x < y, and so (X, \leq) is an anti-chain.

Conversely, if (X, \leq) is an anti-chain, \leq is the equality relation and then we have $\leq^{-1} \circ \beta \circ \leq = \beta$ for any relation β . Hence, choosing β to be \leq^{C} , we obtain that \leq^{C} is quasi-normal.

Assertions, analogous to previous theorem and corollary which regards on quasinormal relations, are presented below.

Theorem 2.4. For a binary relation α on a set X, the following conditions are equivalent:

- (1) α is a quasi-normal relation.
- (2) For all $x, y \in X$, if $(x, y) \in \alpha$, there exists $u, v \in X$ such that:
 - (a) $(u, x) \in \alpha^C \land (v, y) \in \alpha^C$
 - (b) $(\forall s, t \in X)((u, s) \in \alpha^C \land (v, t) \in \alpha^C \Longrightarrow (s, t) \in \alpha).$
- (3) $\alpha \subseteq \alpha^C \circ \alpha^* \circ (\alpha^C)^{-1}$.

Corollary 2.3. Let (X, \leq) be a poset. Relation \leq^C is a quasi-normal relation on X if and only if (X, \leq) is an anti-chain.

References

 H. J. Bandelt, Regularity and complete distributivity, Semigroup Forum, 19(1980), 123-126

- [2] H. J. Bandelt, On regularity classes of binary relations, In: Universal Algebra and Applications, Banach Center Publications, 9(1982), 329-333
- [3] D. Hardy and M. Petrich, Binary relations as lattice isomorphisms, Ann. Mat. Pura Appl, 177(1)(1999), 195-224
- [4] Jiang Guanghao and Xu Luoshan, Conjugative Relations and Applications, Semigroup Forum, 80(1)(2010), 85-91.
- [5] Jiang Guanghao and Xu Luoshan, *Dually normal relations on sets*, Semigroup Forum, 85(1)(2012), 75-80
- [6] Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen, Normal Relations on Sets and Applications, Int. J. Contemp. Math. Sciences, 6(15)(2011), 721 - 726
- [7] G. Markowsky, Idempotents and product representations with applications to the semigroup of binary relations, Semigroup Forum, 5(1972), 95-119
- [8] B. M. Schein, Regular elements of the semigroup of all binary relations, Semigroup Forum, 13(1976), 95-102
- [9] K. A. Zaretskii, Regular elements of the semigroup of binary relations, Uspehi Matem. Nauk, 3(105)(1962), 177-179.
- [10] K. A. Zareckii, The semigroup of binary relations, Mat. Sb., 61(1963), 291-305.
- [11] Xu Xiao-quan and Liu Yingming, Relational representations of hypercontinuous lattices, In : Domain Theory, Logic, and Computation, Kluwer Academic Publisher, 2003, 65-74.