
KYUNGPOOK Math. J. 55(2015), 549-562

http://dx.doi.org/10.5666/KMJ.2015.55.3.549

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Pointless Form of Rough Sets

Abolghasem Karimi Feizabadi∗

Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan,
Iran
e-mail : akarimi@gorganiau.ac.ir

Ali Akbar Estaji and Mostafa Abedi
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University,
Sabzevar, Iran
e-mail : aaestaji@hsu.ac.ir and ms.abedi@hsu.ac.ir

Abstract. In this paper we introduce the pointfree version of rough sets. For this we

consider a lattice L instead of the power set P (X) of a set X. We study the properties of

lower and upper pointfree approximation, precise elements, and their relation with prime

elements. Also, we study lower and upper pointfree approximation as a Galois connection,

and discuss the relations between partitions and Galois connections.

1. Introduction

Rough set theory [10, 11], a new mathematical approach to deal with inexact,
uncertain or vague knowledge, has recently received wide attention on the research
areas in both of the real-life applications and the theory itself. Rough set theory is
an extension of set theory, in which a subset of a universe is described by a pair of
ordinary sets called the lower and upper approximations.

There are at least two methods for the development of this theory, constructive
and axiomatic. In constructive method, the lower and upper approximations are
constructed from the basic notions, such as equivalence relations on a universe and
neighborhood systems. In rough sets, the equivalence classes are the building blocks
for the construction of the lower and upper approximations.

Rough sets are a suitable mathematical model of vague concepts, i.e., concepts
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without sharp boundaries. Rough set theory is emerging as a powerful theory
dealing with imperfect data. It is an expanding research area which stimulates
explorations on both real-world applications and on the theory itself. It has found
practical applications in many areas such as knowledge discovery, machine learning,
data analysis, approximate classification, conflict analysis, and so on, see [2, 9, 12,
13].

Pointless or (as it is also known) pointfree topology has been the focus of math-
ematicians since the early 1910’s. Initial interest was sparked by the German math-
ematician Felix Hausdorff [6] who is believed to be the first to consider, instead of
points in the space, the “notion of (open) set (or neighbourhood) as primitive...”
[8]. Consequently, after 1914, it was common knowledge that a topological space
gives rise to a lattice of open sets. A detailed outline of the history and development
of pointfree topology can be found in Johnstone ([7],[8]).

In this paper we try to construct the pointfree form of Rough set theory. For
this we consider a lattice L rather than the power set P (X) of a set X.

The necessary background on lattices, frames and boolean algebra is given in
section 1.

In section 2 we introduce a partition in a lattice and then pointfree approxi-
mation is introduced by taking a lattice L with a partition (L, θ). So we introduce
pointfree versions of lower and upper rough approximation maps. We prove that
the three fundamental relations of rough approximation maps hold in pointfree form
when L is a frame (Lemma 3.5). Example 3.6 shows that a frame is required in
this case. We introduce the concepts of rough and exact for elements of a frame for
providing the concepts of roughness and preciseness in the pointfree form. Then we
study the behavior of precise element related with lattice concepts such as comple-
ment, pseudocomplement, and Heyting operation.

In section 3, we find some good relations between partitions, lower and upper
rough approximation maps of L, with Galois connections of L. We prove that(
θ, θ

)
is a Galois connection (Proposition 4.1). The set of all partitions with the

partial order refinement is a ∨-semi lattice (Theorem 4.3), also the set of all Galois
connections with a partial order is a ∨-semi lattice (Theorem 4.5). The map given by
θ Ã (θ, θ) from partitions to Galois connections is monotone but does not preserve
∨ (Proposition 4.7 and Example 4.8).

In section 4, we explain when a prime element p ∈ L is a precise element
(Theorem 5.2).

2. Preliminaries

In this section we give the necessary background on Rough set theory, lattices,
frames and boolean algebra.

Rough set Theory: For an equivalence relation θ on A, the equivalence class
of a is denoted by [a]θ. A pair (A, θ), where θ is an equivalence relation on A, is
called an approximation space [10]. For an approximation space (A, θ), by an upper
rough approximation in (A, θ) we mean a mapping Apr : P(A) → P(A) defined for
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every X ∈ P(A) by
Apr(X) = {a ∈ A : [a]θ ∩X 6= ∅}.

Also, by a lower rough approximation in (A, θ) we mean a mapping Apr : P(A) →
P(A) defined for every X ∈ P(A) by

Apr(X) = {a ∈ A : [a]θ ⊆ X}.

The following proposition is well known and easily seen.

Proposition 2.1. Let (A, θ) be an approximation space. For every subsets X, Y ⊆
A, we have

1. Apr(X) ⊆ X ⊆ Apr(X).

2. If X ⊆ Y , then Apr(X) ⊆ Apr(Y ) and Apr(X) ⊆ Apr(Y ).

3. Apr(X ∪ Y ) = Apr(X) ∪Apr(Y ) and Apr(X ∩ Y ) ⊆ Apr(X) ∩Apr(Y ).

4. Apr(X ∩ Y ) = Apr(X) ∩Apr(Y ) and Apr(X ∪ Y ) ⊇ Apr(X) ∪Apr(Y ).

5. Apr
(
Apr(X)

)
= Apr(X) and Apr

(
Apr(X)

)
= Apr(X).

Lattices, Frames and boolean algebras:
Recall that a poset (L,≤) is called a lattice if for every a, b ∈ L, both sup{a, b}

and inf{a, b} exist. We denote sup{a, b} = a∨ b and inf{a, b} = a∧ b. The top and
the bottom elements are denoted by 1 and 0, respectively. A lattice that has top
and bottom element is called bounded. In this paper, all lattices are bounded. We
denote the two elements lattice {0, 1} by 2.

Let L be a lattice. For a, b ∈ L, we say that c (usually denoted by a → b) is a
relative pseudocomplement of a with respect to b, if c is the largest element with
a ∧ c ≤ b. A pseudocomplement of an element a in a lattice L with 0 is the largest
element b such that b ∧ a = 0. If it exists, it is usually denoted by a?. An element
a ∈ L is said to be complemented if there is an element b ∈ L such that a ∨ b = 1
and a ∧ b = 0, we denoted b by a′. A boolean algebra is a distributive lattice every
element of which is complemented.

A prime element of L is an element p ∈ L such that x ∧ y ≤ p implies x ≤ p or
y ≤ p.

A poset L is called a complete lattice if for every subset S of L, both supS =
∨

S
and inf S =

∧
S exist. A complete lattice L is called a frame if for every subset S

and element a of L, a ∧∨
S =

∨{a ∧ s : s ∈ S}.
Proposition 2.2. Let L be a pseudocomplemented distributive lattice. Then the
set RG(L) = {a ∈ L : a = a∗∗} is a Boolean algebra with the operations given by

a ∨RG(L) b = (a ∨L b)∗∗, a ∧RG(L) b = a ∧L b, a′ = a∗

and 0, 1 the same as in L.
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Galois connections [5]: Let S and T be two posets. A pair (g, d) of monotone
functions g : S → T and d : T → S is called a Galois connection between S and T
if for all (s, t) ∈ S × T ,

g(s) ≥ t ⇔ s ≥ d(t).

where g, d are called the upper and the lower adjunctions, respectively.
Galois connections are efficient tools in dealing with ordered sets. They ap-

peared in the literature in two equivalent versions. The version we adopt here uses
order-preserving maps, which is more popular in computer science, and the other
version uses order-reversing maps, which occurs in FCA [4], etc.

Definition 2.3. Let L be a poset.

1. A projection operator (shortly projection) is an idempotent, monotone self-
map p : L → L.

2. A closure operator is a projection operator c on L with 1L ≤ c.

3. A kernel operator is a projection operator k on L with k ≤ 1L .

3. Partitions and Precise Elements in a Lattice

It is well known that every complete lattice has a top and a bottom element,
which we denote by 1 and 0, respectively.

Definition 3.1. Let L be a complete lattice. A subset θ of L is called a partition
of L, if

1. 0 6∈ θ.

2. For every two distinct a, b ∈ θ, a ∧ b = 0.

3.
∨

θ = 1.

Definition 3.2. Let L be a complete lattice and θ be a partition of L. For every
x ∈ L, define

θ(x) =
∨
{a ∈ θ : a ∧ x 6= 0}

and
θ(x) =

∨
{a ∈ θ : a ≤ x}.

Lemma 3.3. Let L be a complete lattice. Then θ, θ : L → L are ordered preserving.

Proof. It is clear. 2

Remark 3.4. If L is a complete lattice and θ is a partition of L, then, by the fixed
point lemma for complete lattices, there are x0, x1 ∈ L such that θ(x0) = x0, and
θ(x1) = x1.

Lemma 3.5. Let L be a complete lattice and θ a partition of L. For all x ∈ L
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1. θ(x) ≤ θ(x).

2. θ(x) ≤ x.

3. If L is a frame, x ≤ θ(x).

Proof. (1) Since 0 6∈ θ, we conclude that {a ∈ θ : a ≤ x} ⊆ {a ∈ θ : a ∧ x 6= 0},
which proves (1).

(2) It is clear.
(3) Let L be a frame and x ∈ L. Let θ1 = {y ∈ θ : x ∧ y = 0}. Since L is a

frame, we conclude that

x = (x ∧ θ(x)) ∨ (x ∧
∨

θ1) = (x ∧ θ(x)) ∨ 0 = x ∧ θ(x).

Therefore x ≤ θ(x). 2

Example 3.6. (1) Let L = {0, a, b, c, 1} be the non distributive lattice M5 (see
[1]). Consider the partition θ = {b, c}. We have a 6≤ θ(a) = 0.

(2) Let L = {0, a, b, c, 1} be the non distributive lattice N5 with a ≤ b and
b ∧ c = 0 (see [1]). Consider the partition θ = {a, c}. We have b 6≤ θ(b) = a.

Remark 3.7. It is well known that L is a non distributive lattice if and only if M5

or N5 can be embedded into L (see Theorem 3.6, [1]). If L is a non distributive
lattice, we can find a partition θ that the inequality x ≤ θ(x) does not hold.

Throughout this paper L is a frame with the least element 0 and the greatest
element 1 and θ is a partition of L.

Definition 3.8. An element a ∈ L is called a rough element if θ(a) < θ(a),
otherwise it is called a precise element, i.e., θ(a) = θ(a).

Theorem 3.9. Let θ be a partition of L and x ∈ L.

1. θ(x) is a precise element.

2. θ(x) is a precise element.

Proof. (1) Let x ∈ L, and a ∈ θ. We have

a ∧ θ(x) = a ∧
∨
{b ∈ θ : b ∧ x 6= 0} =

∨
{a ∧ b : b ∈ θ, b ∧ x 6= 0}

Since θ is a partition, we conclude that for every b ∈ θ, b 6= a implies that a∧ b = 0.
It follows that

a ∧ θ(x) = 0 ⇔ a ∧ x = 0

a ∧ θ(x) = a ⇔ a ∧ x 6= 0.

Hence,
a ∧ θ(x) 6= 0 ⇔ a ∧ x 6= 0 ⇔ a ≤ θ(x)
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and thus
∨
{a ∈ θ : a ∧ θ(x) 6= 0} =

∨
{a ∈ θ : a ∧ x 6= 0} =

∨
{a ∈ θ : a ≤ θ(x)}.

Therefore,
θ(θ(x)) = θ(x) = θ(θ(x)).

It completes the proof.
(2) First note that for every a ∈ θ, a ∧ θ(x) = a ∧∨{b ∈ θ : b ≤ x} =

∨{a ∧ b :
b ∈ θ, b ≤ x}. Hence

a ≤ x ⇔ a ∧ θ(x) = a ⇔ a ≤ θ(x) ⇔ a ∧ θ(x) 6= 0

Therefore,
∨{a ∈ θ : a ≤ θ(x)} =

∨{a ∈ θ : a ≤ x} =
∨{a ∈ θ : a ∧ θ(x) 6= 0},

which follows that θ(θ(x)) = θ(x) = θ(θ(x)). 2

Theorem 3.10. Let θ be a partition of L and x ∈ L. Then

1. θ(x∗) is the complement of θ(x) and θ(x∗) = (θ(x))∗.

2. θ(x∗) is the complement of θ(x) and θ(x∗) = (θ(x))∗.

Proof. (1) For every a ∈ θ, if a ≤ x∗, then a ∧ x = 0 and

a ∧ θ(x) = a ∧
∨
{b ∈ θ : b ∧ x 6= 0} =

∨
{a ∧ b : b ∈ θ, b ∧ x 6= 0} = 0.

So, we have
θ(x∗) ∧ θ(x) =

∨
{a ∧ θ(x) : a ∈ θ, a ≤ x∗} = 0

and
θ(x∗) ∨ θ(x) =

∨
{a ∈ θ : a ∧ x = 0 or a ∧ x 6= 0} =

∨
θ = 1.

Therefore, θ(x∗) is the complement of θ(x).
(2) Let a ∈ θ. If a 6≤ x, then a ∧ θ(x) =

∨{a ∧ b : b ∈ θ, b ≤ x} = 0. So,

θ(x) ∧ θ(x∗) =
∨{a ∧ θ(x) : a ∈ θ, a ∧ x∗ 6= 0}

≤ ∨{a ∧ θ(x) : a ∈ θ, a 6≤ x}
= 0

and
θ(x) ∨ θ(x∗) =

∨{a ∈ θ : a ∧ x∗ 6= 0} ∨∨{a ∈ θ : a ≤ x}
≥ ∨{a ∈ θ : a 6≤ x or a ≤ x}
=

∨
θ

= 1.

Therefore, θ(x∗) is the complement of θ(x). 2

Theorem 3.11. Let θ be a partition of L. For x ∈ L, if x is a precise element,
then
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1. x∗ is a precise element.

2. x∗ is the complement of x.

Proof. By hypothesis, θ(x) = x = θ(x) and by Theorem 3.10, we have θ(x∗) =
(θ(x))∗ = x∗ = (θ(x))∗ = θ(x∗), that is, x∗ is a precise element. Also, x∗ ∨ x =
θ(x∗) ∨ θ(x) = 1 and x∗ ∧ x = θ(x∗) ∧ θ(x) = 0, by Theorem 3.10. Therefore x∗ is
the complement of x. 2

Proposition 3.12. Let θ be a partition of frame L such that θ preserves binary
meets. Then

1. For every a ∈ L and b ∈ Fix(θ), a −→ b ∈ Fix(θ).

2. For every a ∈ L and b ∈ Fix(θ), θ(a) −→ b = a −→ b.

Proof. (1) Let a ∈ L, and let b ∈ Fix(θ). Then

a ∧ θ(a −→ b) ≤ θ(a) ∧ θ(a −→ b)
= θ(a ∧ (a −→ b))
= θ(a ∧ b)
≤ θ(b)
= b.

Hence θ(a −→ b) ≤ a −→ b and since a −→ b ≤ θ(a −→ b), we conclude that
θ(a −→ b) = a −→ b ∈ Fix(θ).

(2) Let a ∈ L, and let b ∈ Fix(θ). So,

a ∧ (a −→ b) ≤ b ⇒ θ(a) ∧ θ(a −→ b) = θ(a ∧ (a −→ b)) ≤ θ(b) = b

⇒ a −→ b ≤ θ(a −→ b) ≤ θ(a) −→ b.

Also, since θ(a) −→ b ≤ a −→ b, we conclude that θ(a) −→ b = a −→ b. 2

Corollary 3.13. Let θ be a partition of a frame L such that θ preserves binary
meets. Then for every a, b ∈ L,

1. θ(a −→ θ(b)) = a −→ θ(b).

2. θ(a) −→ θ(b) = a −→ θ(b).

3. θ(a −→ θ(b)) = a −→ θ(b).

4. θ(a) −→ θ(b) = a −→ θ(b).

Proof. By Proposition 3.12, it is clear. 2

Proposition 3.14. Let θ be a partition of a frame L. Then the following statements
are equivalent.

1. θ preserves binary meets.

2. For every a, b ∈ L, θ(θ(a) −→ b) = a −→ θ(b).



556 A. Karimi Feizabadi, A. A. Estaji and M. Abedi

Proof. (1) ⇒ (2) Let a, b ∈ L. Then for every x ∈ L,

θ(θ(a) −→ b) ≥ x ⇔ θ(a) −→ b ≥ θ(x)
⇔ θ(a ∧ x) = θ(a) ∧ θ(x) ≤ b
⇔ a ∧ x ≤ θ(b)
⇔ x ≤ a −→ θ(b).

Therefore, θ(θ(a) −→ b) = a −→ θ(b).
(2) ⇒ (1) Let a, b ∈ L. Then for every x ∈ L,

θ(a ∧ b) ≤ x ⇔ a ∧ b ≤ θ(x)
⇔ a ≤ (b −→ θ(x)) = θ(θ(b) −→ x)
⇔ θ(a) ≤ θ(b) −→ x

⇔ θ(a) ∧ θ(b) ≤ x.

Therefore, θ(a ∧ b) = θ(a) ∧ θ(b). 2

Corollary 3.15. Let θ be a partition of L. Then, θ : L −→ L is a frame map if
and only if for every a, b ∈ L, θ(θ(a) −→ b) = a −→ θ(b).

Proposition 3.16. Let θ be a partition of L. Then the following statements are
equivalent.

1. θ is a one-one map.

2. For every x ∈ L and a ∈ θ, a ∧ x = 0 or a ≤ x.

3. For every x ∈ L, θ(x) = x.

4. For every x ∈ L, there exists a unique θx ⊆ θ such that x =
∨

θx.

Proof. (1) ⇒ (2) Let x ∈ L and a ∈ θ. If a∧x 6= 0, then θ(a) = a = θ(a∧x), which
follows that a = a ∧ x, that is, a ≤ x.

(2) ⇒ (3) Let x ∈ L. Then x ≤ θ(x) =
∨{a ∈ θ : a ∧ x 6= 0} =

∨{a ∈ θ : a ≤
x} ≤ x. Therefore, θ(x) = x.

(3) ⇒ (4) Let x ∈ L and θx = {a ∈ θ|a ∧ x 6= 0}. Then x = θ(x) =
∨

θx.
Now suppose that there exists θ1 ⊆ θ such that x =

∨
θ1. If b ∈ θx \ θ1, then

b = b ∧ x = b ∧ ∨
θ1 = 0 ∈ θ, which is a contradiction. If c ∈ θ1 \ θx, then

c = c ∧ x = c ∧∨
θx = 0 ∈ θ, which is again a contradiction. Therefore, θ1 = θx.

(4) ⇒ (1) Let x ∈ L. Then there exists a unique θx ⊆ θ such that x =
∨

θx.
Hence θ(x) = θ(

∨
θx) =

∨
a∈θx

θ(a) =
∨

a∈θx
a = x. Also, since θx ⊆ {a ∈ θ|a ≤ x},

we conclude that x =
∨

θx ≤ θ(x). By Lemma 3.5, x = θ(x). 2

Theorem 3.17. Let L be a frame. Then, θ is a one-one map if and only if θ is
the set of all atoms of L and L is an atomic complete boolean algebra.

Proof. Suppose that θ is a one-one map. By Proposition 3.16(4), every element of
L is precise, and so by Theorem 3.11 every element of L is complemented, therefore
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L is a complete boolean algebra. Assume a ∈ θ and 0 6= x ≤ a. By Proposition
3.16(4) there exists a unique θx ⊆ θ such that x =

∨
θx. Let b ∈ θx. So, a ≥ x ≥ b,

hence a = b, and thus x = a. Therefore a is an atom. Now, let a be an atom.
Again, by Proposition 3.16(4), there exists a unique θa ⊆ θ such that a =

∨
θa. Let

b ∈ θa. Hence b ≤ a, since a is an atom, b = a, and so a ∈ θ. It gives that θ is equal
to the set of all atoms of L. Therefore L is atomic.

Conversely, suppose L is an atomic complete boolean algebra and θ is the set
of all atoms of L. Hence every element x ∈ L is a join of atoms of L. So, by
Proposition 3.16, θ is one-one. 2

Proposition 3.18. Let θ be a partition of a complete Boolean algebra L. Then the
following statements are equivalent.

1. θ preserves binary meets.

2. θ = idL.

3. θ is one-one.

4. L is atomic and θ is the set of all atoms of L.

Proof. (1) ⇒ (2) Let x ∈ L \ {0, 1}. It is clear that

0 = θ(x ∧ x′) = θ(x) ∧ θ(x′) =
∨{a ∧ b : a, b ∈ θ&a ∧ x 6= 0&a ∧ x′ 6= 0}

Hence for every a ∈ θ, a ∧ x = 0 if and only if a ∧ x′ 6= 0 and also,

θ(x) = (x ∧ θ(x)) ∨ (x′ ∧ θ(x))
= (x ∧ θ(x)) ∨∨{x′ ∧ a : a ∈ θ&x ∧ a 6= 0}
= x ∧ θ(x).

Hence x ≤ θ(x) ≤ x, that is, θ(x) = x. (2) ⇒ (1) is clear, (2)⇔(3) by Proposition
3.16, and (3)⇔(4) by Theorem 3.17. 2

Corollary 3.19. Let θ be a partition of a set X. Then the following statements
are equivalent.

1. Aprθ preserves binary meets.

2. θ = {{x} : x ∈ X}.
Proof. Consider L = P (X), which is an atomic complete boolean algebra whose set
of all atoms is {{x} : x ∈ X}. So, by Theorem 3.17, Propositions 3.16, and 3.18,
the proof is complete. 2

4. Partitions and Galois Connections

Let L be a frame. For a partition θ of L, by Lemmas 3.3 and 3.5, we have θ
is a closure operator on L, and also, θ is a kernel operator on L (Definition 2.3).
Proposition 4.1. Let θ be a partition of a frame L. Then

(
θ, θ

)
is a Galois
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connection.

Proof. Let x, y ∈ L and θ(x) ≥ y. For every a ∈ θ, we have

a ∧ y 6= 0 ⇒ 0 6= a ∧ θ(x) =
∨{a ∧ b : b ∈ θ&b ≤ x}

⇒ a ≤ x
⇒ a ∧ x = a.

Hence
x ∧ θ(y) =

∨{a ∧ x : a ∈ θ&a ∧ y 6= 0}
=

∨{a ∈ θ : a ∧ y 6= 0}
= θ(y).

Therefore x ≥ θ(y).
Let x, y ∈ L and x ≥ θ(y) =

∨{a ∈ θ : a∧ y 6= 0}. For every a ∈ θ, if a∧ y 6= 0,
then a ≤ x, which follows that if a 6≤ x, then a ∧ y = 0. So that

y ∧ θ(x) =
∨{a ∧ y : a ∈ θ&a ≤ x}

=
∨{a ∧ y : a ∈ θ&a ≤ x} ∨∨{a ∧ y : a ∈ θ&a 6≤ x}

= y ∧∨
θ

= y.

Therefore θ(x) ≥ y. 2

Definition 4.2. Let θ1 and θ2 be two partitions. We say that θ2 is a refinement
of θ1, and denote it by θ1 ¹ θ2, if for every a ∈ θ1, there exists S ⊆ θ2 such that
a =

∨
S. The set of all the partitions of L is denoted by Part(L).

Theorem 4.3. (Part(L),¹) is a ∨-semi lattice.

Proof. Reflexivity and transitivity of ¹ is clear, thus we show that ¹ is anti-
symmetric. Assume θ1 ¹ θ2 and θ2 ¹ θ1. Let a ∈ θ1. By the definition of a
refinement, there exists S ⊆ θ2 such that a =

∨
S. Let b ∈ S. So, 0 6= b ≤ a.

On the other hand there exists T ⊆ θ1 such that b =
∨

T . If a 6∈ T , b = a ∧ b =
a ∧∨

T =
∨{a ∧ t : t ∈ T} = 0, which contradicts b ∈ θ2. So, a ∈ T , thus a ≤ b,

and therefore a = b ∈ θ2. Hence θ1 ⊆ θ2. Similarly, θ2 ⊆ θ1. So θ1 = θ2 and we
conclude that (Part(L),¹) is a partial ordered set.

Let θ1, θ2 ∈ Part(L). We put θ = {a1 ∧ a2|(a1, a2) ∈ θ1 × θ2} \ {0}. Then
1 =

∨
θ1 ∧

∨
θ2 =

∨
a1∈θ1

∨
a2∈θ2

a1 ∧ a2 =
∨

θ. If a ∈ θ1, then a = a ∧ ∨
θ2 =∨{a ∧ b|b ∈ θ2}. Hence θ1 ¹ θ and similarly θ2 ¹ θ. Now, suppose that there

exists θ3 ∈ Part(L) such that θ1 ¹ θ3 and θ2 ¹ θ3. If c ∈ θ, then there exists
(a, b) ∈ θ1× θ2 such that c = a∧ b. Since there exist Sa, Sb ⊆ θ3 such that a =

∨
Sa

and b =
∨

Sb, we conclude that c =
∨{x ∧ y|(x, y) ∈ Sa × Sb} =

∨{x ∧ x|(x, x) ∈
Sa × Sb} =

∨{x|x ∈ Sa ∩ Sb}. Therefore θ ¹ θ3 and so θ1 ∨ θ2 = θ. Hence Part(L)
is a ∨-semi lattice. 2

Definition 4.4. Let (f1, g1) and (f2, g2) be two Galois connections of L, that is
fi a gi for i = 1, 2. Define (f1, g1) ≤ (f2, g2), if f1 ≥ f2 and g1 ≤ g2. The set of all
Galois connections is denoted by Gal(L).
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Theorem 4.5. (Gal(L),≤) is a ∨-semi lattice.

Proof. It is clear that Gal(L) is a partially ordered set. Let (f1, g1), (f2, g2) ∈
Gal(L). Then, for every s, t ∈ L,

f1(t) ∧ f2(t) ≥ s ⇔ f1(t) ≥ s&f2(t) ≥ s
⇔ t ≥ g1(s)&t ≥ g2(s)
⇔ t ≥ g1(s) ∨ g2(s)

Therefore (f1∧f2, g1∨g2) ∈ Gal(L). It is clear that (f1∧f2, g1∨g2) is an upper bound
for {(f1, g1), (f2, g2)}. Let (f, g) ∈ Gal(L) be an upper bound for {(f1, g1), (f2, g2)}.
Then

∀1 ≤ i ≤ 2 (fi ≥ f&gi ≤ g) ⇒ f1 ∧ f2 ≥ f&g1 ∨ g2 ≤ g
⇒ (f1 ∧ f2, g1 ∨ g2) ≤ (f, g).

Hence (f1, g1)∨ (f2, g2) = (f1∧f2, g1∨g2) and we conclude that Gal(L) is a ∨-semi
lattice. 2

Lemma 4.6. If θ is a partition of L and θ′ ⊂ θ ⊂ θ′′, then θ′, θ′′ are not partitions.

Proof. If θ′ is a partition, and x ∈ θ \ θ′, then, 1 =
∨

θ′ =
∨

θ, and hence
x = x ∧∨

θ′ =
∨{x ∧ a : a ∈ θ′} = 0, which contradicts x ∈ θ.

Now, if θ′′ is a partition, then, by the above proof, θ is not a partition. Hence
θ′′ is not a partition, too. 2

Proposition 4.7. The map φ : Part(L) → Gal(L) given by θ Ã (θ, θ) is an order
preserving map and a monomorphism.

Proof. Suppose φ(θ1) = φ(θ2). So, for a ∈ θ1, a = θ1(a) = θ2(a) =
∨{b ∈ θ2 :

a ∧ b 6= 0} =
∨

S, where S ⊆ θ2. So, by the definition of a refinement, θ1 ¹ θ2.
Similarly θ2 ¹ θ1. Therefore θ1 = θ2. To show the order preserving, let θ1 ¹ θ2. We
show that for every x ∈ L, θ1(x) ≥ θ2(x), and θ1(x) ≤ θ2(x). For every a ∈ θ1, there
exists Sa ⊆ θ2 such that a =

∨
Sa. Hence 1 =

∨
θ1 =

∨
a∈θ1

∨
Sa, which follows

that
⋃

a∈θ1
Sa is a partition of L. By Lemma 4.6, θ2 =

⋃
a∈θ1

Sa. If (x, b) ∈ L× θ2

and b∧x 6= 0, then there exists a ∈ θ1 such that b ∈ Sa and a =
∨

Sa, which follows
that a ∧ x 6= 0 and b ≤ a. Therefore

θ2(x) =
∨
{b ∈ θ2|b ∧ x 6= 0} ≤

∨
{a ∈ θ1|a ∧ x 6= 0} = θ1(x).

Also,
a ≤ x ⇔ ∀b ∈ Sa(b ≤ x).

Hence θ1(x) ≤ θ2(x). 2

Example 4.8. Let X = {1, 2, . . . , 12} and L = P(X). If

θ1 = {{1}, {2, 3}, {4}, {5, 9}, {6, 7, 10, 11}, {8, 12}},

θ2 = {{1, 2, 5, 6}, {3, 4, 7, 8}, {9, 10}, {11, 12}}
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and A = {4, 6, 7}, then θ1∨θ2 = {{x}|x ∈ X}, θ1(A) = {4, 6, 7, 10, 11}, θ2(A) = {4}
and θ1 ∨ θ2(A) = A 6= {4} = θ1 ∧ θ2(A). Hence φ : Part(L) → Gal(L) does not
preserve binary joins.

Proposition 4.9. If L is a compact frame and θ ∈ Part(L), then θ is a finite set.

Proof. Since L is a compact frame and 1 =
∨

θ, we conclude that there exists θ′ ⊆ θ
such that θ′ is a finite set and 1 =

∨
θ′. It is clear that θ′ ∈ Part(L) and by Lemma

4.6, θ′ = θ 2

Proposition 4.10. Let L be a complete Boolean algebra.

1. For every x ∈ L,
∧

θ θ(x) =
∨

θ θ(x) = x, where the suprimum and infimum
are taken over all partitions θ of L.

2. In the poset Gal(L),
∨

θ(θ, θ) = (idL, idL) = 1Gal(L).

Proof. (1) Let x ∈ L \ {0, 1}. Since L is a Boolean algebra, x has a complement x′.
Hence θx = {x, x′} is a partition of L and θx(x) = x = θx(x). Since x ≤ ∧

θ θ(x) ≤
θx(x) = x and x = θx(x) ≤ ∨

θ θ(x) ≤ x, we conclude that
∧

θ θ(x) = x =
∨

θ θ(x).
(2) By (1) and noting that (idL, idL) is a Galois connection, which is the top

element of Gal(L). 2

Proposition 4.11. Let L be a frame. If θ is a partition of RG(L), then θ is a
partition of L.

Proof. Let θ be a partition of RG(L). Using Proposition 2.2, we have

1 =
RG(L)∨

θ = (
L∨

θ)∗∗ ⇒ 0 = (
L∨

θ)∗ ⇒ 1 =
L∨

θ

since for x ∈ L we have x∗ = 0 if and only if x = 1. So that θ is a partition of L.2

5. Prime Elements and Precise Elements

Let θ be a partition of L, and p be a prime element. First note that for every two
distinct elements of θ, one of them is less than p. Because, if a 6= b, a ∧ b = 0 ≤ p,
since p is prime, a ≤ p or b ≤ p. On the other hand, since p < 1, there is a ∈ θ such
that a 6≤ p. So, there is a unique a ∈ θ such that a 6≤ p, we denoted it by ap. So,
we have proved:
Lemma 5.1. Let θ be a partition of L. If p ∈ L is a prime element, there is a
unique ap ∈ θ, such that ap 6≤ p.

Theorem 5.2. If p ∈ L is prime, then

1. θ(p) =
∨

(θ \ {ap}).
2. p is a precise element if and only if ap ∧ p = 0.

3. θ(p) = 1 if and only if ap ∧ p 6= 0.

4. p is a precise element if and only if θ(p) < 1.
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Proof. By Lemma 5.1, for every a ∈ θ, a ≤ p if and only if a 6= ap, which proves
(1). Now, assume that ap ∧ p = 0. Hence, by (1), we have

θ(p) =
∨
{a ∈ θ : a ∧ p 6= 0} =

∨
(θ \ {ap}) = θ(p)

Conversely, suppose that ap ∧ p 6= 0, and hence

θ(p) =
∨
{a ∈ θ : a ∧ p 6= 0} =

∨
θ = 1 6= θ(p)

These prove both (2) and (3). By (2) and (3) we easily get (4). 2

Corollary 5.3. Let θ be a partition of L. If p ∈ L is prime and p ≤ x < 1 such
that x is a precise element, then p is a precise element.

Proof. Since x is a precise element, θ(x) = x < 1. By Lemma 3.3, θ(p) ≤ θ(x) < 1.
By Theorem 5.2(4), p is a precise element. 2

6. Conclusion

We introduced pointfree form of rough set theory, by taking a complete lattice
L with a partition θ, and we defined θ and θ, upper and lower pointless approxi-
mation maps. The partitions θ and θ on a frame are closure and kernel operators,
respectively, and also, the pair (θ, θ) is a Galois connection on L. We showed that
θ(x∗) and θ(x∗) are complements of θ(x) and θ(x) respectively. We introduced the
notion of a precise element and proved that θ(x) and θ(x) are precise elements.
Also, we showed that the precise elements are complemented and their comple-
ments are precise elements. We gave some equations by the Heyting operation →
under condition of ”θ preserves binary meets”, and we concluded that the equation
θ(θ(a) → b) = a → θ(b) is equivalent to θ to be a frame map. We proved that θ is a
one-one map if and only if θ is the set of all atoms of L and L is an atomic complete
boolean algebra. By the way pointless rough set theory we studied relations between
Galois connections and partitions of L. We considered all Galois connections of L,
Gal(L), and all partitions of L, Part(L). We proved that both of them are ∨-semi
lattice, and we showed that the map given by θ Ã (θ, θ) is an order preserving map
and a monomorphism, also, it does not preserve binary joins. Also, we proved that∨

θ(θ, θ) = (idL, idL) = 1Gal(L). Finally, we characterized prime precise elements of
L, and described θ(p) and θ(p) for a prime element p ∈ L.
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