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Abstract. With the notion of weighted sharing of values we study the uniqueness of

meromorphic functions when certain nonlinear differential polynomials share a nonzero

polynomial. Our results improve some recent results including that of a present first au-

thor [Kyungpook Math. J., 51(2011), 43-58].

1. Introduction

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [6], [15] and [16]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic func-
tion h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)}(r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions. For a ∈ C ∪ {∞} we
say that f and g share the value a CM (counting multiplicities) if f − a and g − a
have the same set of zeros with the same multiplicities and we say that f and g
share the value a IM (ignoring multiplicities) if we do not consider the multiplicities.
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Throughout this paper, we need the following definition.

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)
T (r, f)

,

where a is a value in the extended complex plane.

In 1959, Hayman [5] proved the following result.

Theorem A. Let f be a transcendental entire function, and let n(≥ 1) be an integer.
Then fnf ′ = 1 has infinitely many zeros.

In 2002, Fang and Fang [4] proved the following result.

Theorem B. Let f and g be two nonconstant entire functions, and let n(≥ 8) be
an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

In the same year Fang [3] investigated the value sharing of more general non-
linear differential polynomial than that was considered in Theorem B and obtained
the following result.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM,
then f ≡ g.

In 2004, Lin and Yi [12] considered the case of meromorphic function in Theorem
B and obtained the following.

Theorem D. Let f and g be two nonconstant meromorphic functions with
Θ(∞, f) > 2/(n + 1), and let n(≥ 12) be an integer. If fn(f − 1)f ′ and gn(g− 1)g′

share 1 CM, then f ≡ g.

Natural inquisition would be to investigate the situation for meromorphic func-
tion in Theorem C. In this direction in 2008, Zhang [17] proved the following result.

Theorem E. Suppose that f is a transcendental meromorphic function with finite
number of poles, g is a transcendental entire function, and let n, k be two positive
integers with n ≥ 2k + 6. If (fn(f − 1))(k) and (gn(g − 1))(k) share 1 CM, then
f ≡ g.

To proceed further we require the following definition known as weighted sharing
of values introduced by I. Lahiri [7] which measure how close a shared value is to
being shared CM or to being shared IM.

Definition 1.1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
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if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

In 2009, using the notion of weighted sharing of values, Xu, Yi and Cao [13]
proved the following result.

Theorem F. Let f and g be two nonconstant meromorphic functions, and n(≥ 1),
k(≥ 1) and l(≥ 0) be three integers such that Θ(∞, f) + Θ(∞, g) > 4/n. Suppose
[fn(f − 1)](k) and [gn(g − 1)](k) share (1, l). If l ≥ 2 and n > 5k + 11 or if l = 1
and n > 7k + 23/2, then f = g.

Note 1.1. The above result is partially correct. According to the method of
approach in [13] there is a gap in the proof of Theorem 1.2.

Recently, Li [11] proved the following result which rectify and at the same time
improve Theorem F.

Theorem G. Let f and g be two nonconstant meromorphic functions, and n(≥ 1),
k(≥ 1) and l(≥ 0) be three integers such that Θ(∞, f) + Θ(∞, g) > 4/n. Suppose
[fn(f − 1)](k) and [gn(g − 1)](k) share (1, l). If l ≥ 2 and n > 3k + 11 or if l = 1
and n > 5k + 14, then f = g or [fn(f − 1)](k)[gn(g − 1)](k) = 1.

Note 1.2. Unfortunately Theorem G is also not true for rational functions. One
can easily see that in the proof of Lemma 2.5 in subcase 3.2, (2.22) is only true when
f and g are transcendental functions. Since in the proof of Theorem G, Lemma 2.5
plays a vital role, the same theorem cease to be hold for rational functions.

In this direction recently the present first author [1] proved the following results
first one of which improves Theorem G.

Theorem H. Let f and g be two transcendental meromorphic functions and n(≥ 1),
k(≥ 1), l(≥ 0) be three integers such that Θ(∞, f)+Θ(∞, g) > 4/n. Suppose for two
nonzero constants a and b, [fn(af + b)](k) and [gn(ag + b)](k) share (1, l). If l ≥ 2
and n ≥ 3k+9 or if l = 1 and n ≥ 4k+10 or if l = 0 and n ≥ 9k+18, then f = g or
[fn(af + b)](k)[gn(ag + b)](k) = 1. The possibility [fn(af + b)](k)[gn(ag + b)](k) = 1
does not occur for k = 1.

Theorem I. Let f and g be two transcendental entire functions, and let n(≥ 1), k(≥
1), l(≥ 0) be three integers. Suppose for two nonzero constants a and b, [fn(af +
b)](k) and [gn(ag + b)](k) share (1, l). If l ≥ 2 and n ≥ 2k + 6 or if l = 1 and
n ≥ 5k/2 + 7 or if l = 0 and n ≥ 5k + 12, then f = g.

Following questions are inevitable:

Question 1.1. Is it possible in any way to remove the second conclusion of Theorem
H?
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Question 1.2. What can be said if one replace the sharing value 1 by a nonzero
polynomial in Theorems H and I?

In the paper, our main concern is to find the affirmative answer of the above
questions. We prove following two theorems first one of which improves Theorem H
and second one improves Theorem I. We now state the main results of the paper.

Theorem 1.1. Let f and g be two non-entire transcendental meromorphic func-
tions, and let n(≥ 1), k(≥ 1), l(≥ 0) be three integers such that Θ(∞, f) +
Θ(∞, g) > 4/n. Suppose for two nonzero constants a and b, [fn(af + b)](k)−P and
[gn(ag+b)](k)−P share (0, l) where P (6≡ 0) is a polynomial. If l ≥ 2 and n ≥ 3k+9
or if l = 1 and n ≥ 4k + 10 or if l = 0 and n ≥ 9k + 18, then f = g.

Theorem 1.2. Let f and g be two transcendental entire functions, and let n(≥
1), k(≥ 1), l(≥ 0) be three integers. Suppose for two nonzero constants a and b,
[fn(af +b)](k)−P and [gn(ag+b)](k)−P share (0, l) where P ( 6≡ 0) is a polynomial.
If l ≥ 2 and n ≥ 2k + 6 or if l = 1 and n ≥ 5k/2 + 7 or if l = 0 and n ≥ 5k + 12,
then f = g.

However the following question is still open :

Question 1.3. Keeping all other conditions intact, are Theorems 1.1 and 1.2 true
for rational functions also ?

Though the standard definitions and notations of the value distribution theory
are available in [6], we explain some definitions and notations which are used in the
paper.

Definition 1.2.([8]) For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting
function of simple a points of f . For a positive integer p we denote by N(r, a; f |≤ p)
the counting function of those a-points of f (counted with multiplicities) whose
multiplicities are not greater than p. By N(r, a; f |≤ p) we denote the corresponding
reduced counting function.

In an analogous manner we define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 1.3.([7]) Let k be a positive integer or infinity. We denote by Nk(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) + ... + N(r, a; f |≥ k).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two nonconstant meromorphic functions defined in C. We shall denote
by H the following function:

H =
(

F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
.
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Lemma 2.1.([14]) Let f be a transcendental meromorphic function, and let Pn(f)
be a differential polynomial in f of the form

Pn(f) = anfn(z) + an−1f
n−1(z) + ... + a1f(z) + a0,

where an(6= 0), an−1, ... , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) + O(1).

Lemma 2.2.([18]) Let f be a nonconstant meromorphic function, and p, k be pos-
itive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) + Np+k(r, 0; f) + S(r, f),(2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) + Np+k(r, 0; f) + S(r, f).(2.2)

Lemma 2.3.([7]) Let F and G be two nonconstant meromorphic functions sharing
(1, 2). Then one of the following cases holds:

(i) T (r) ≤ N2(r, 0; F ) + N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + S(r),
(ii) F = G,
(iii) FG = 1,
where T (r) denotes the maximum of T (r, F ) and T (r,G) and S(r) = o{T (r)} as
r →∞, possibly outside a set of finite linear measure.

Lemma 2.4.([2]) Let F and G be two nonconstant meromorphic functions sharing
(1, 1) and H 6≡ 0. Then
T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + 1

2N(r, 0;F ) +
1
2N(r,∞; F ) + S(r, F ) + S(r,G).

Lemma 2.5.([2]) Let F and G be two nonconstant meromorphic functions sharing
(1, 0) and H 6≡ 0. Then
T (r, F ) ≤ N2(r, 0; F ) + N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + 2N(r, 0; F ) +
N(r, 0; G) + 2N(r,∞;F ) + N(r,∞; G) + S(r, F ) + S(r,G).

Lemma 2.6.([10]) If N(r, 0; f (k) | f 6= 0) denote the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity, then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.7.([6],[15]) Let f be a transcendental meromorphic function, and let
a1(z), a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f),
i=1,2. Then

T (r, f) ≤ N(r,∞; f) + N(r, a1; f) + N(r, a2; f) + S(r, f).
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Lemma 2.8. Let f and g be two non-entire transcendental meromorphic functions,
let n, k be two positive integers and let P be a nonconstant polynomial. If n ≥ 2k+5,
then

(fn(af + b))(k)(gn(ag + b))(k) 6= P 2,

where a, b are any two nonzero constants.

Proof. If possible, let

(fn(af + b))(k)(gn(ag + b))(k) = P 2.(2.3)

Let z1 6∈ {z : P (z) = 0} be a zero of f with multiplicity p1(≥ 1). Then it follows
from (2.3) that z1 is a pole of g. Suppose that z1 is a pole of g of order q1(≥ 1).
Then we have

(2.4) np1 − k = (n + 1)q1 + k.

From (2.4) we get q1 + 2k = n(p1 − q1) ≥ n, i.e., q1 ≥ n − 2k. Thus from (2.4) we
obtain np1 = (n + 1)q1 + 2k, and so

p1 ≥ n− 2k + 1.

Let z2 6∈ {z : P (z) = 0} be a zero of af + b with multiplicity p2(≥ k + 1). Then
from (2.3) it follows that z2 is a pole of g. Suppose that z2 is a pole of g of order
q2(≥ 1). Then we have p2 − k = (n + 1)q2 + k, i.e.,

p2 ≥ n + 2k + 1.

If z3 6∈ {z : P (z) = 0} is a zero of af + b with multiplicity p3(≤ k), then from (2.3)
it follows that z3 may be a zero of (fn(af + b))k and if it happens then it will be a
pole of g with multiplicity n + k + 1. Suppose that z4 6∈ {z : P (z) = 0} be a pole
of f . Then from (2.3) it is clear that z4 is either a zero of gn(ag + b) or a zero of
(gn(ag + b))(k). Therefore

N(r,∞; f) ≤ N(r, 0; g) + N(r, 0; ag + b |≤ k) + N(r, 0; ag + b |≥ k + 1)
+N(r, 0;h(k) | h 6= 0) + S(r, g),(2.5)

where N(r, 0;h(k) | h 6= 0) denotes the reduced counting function of those zeros of
h(k) that are not the zeros of h and h = gn(ag + b).
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By Lemma 2.6 we have

N(r, 0; h(k) | h 6= 0) ≤ 1
n + k + 1

[N(r, 0; h(k) | h 6= 0)]

≤ 1
n + k + 1

[kN(r,∞; h) + N(r, 0;h |< k) + kN(r, 0;h |≥ k)]

≤ 1
n + k + 1

[kN(r,∞; h) + Nk(r, 0; h)]

≤ k

n + k + 1
[N(r,∞; g) + N(r, 0; g) + N(r, 0; ag + b)]

≤ k

n + k + 1
[N(r,∞; g) + N(r, 0; g) + N(r, 0; ag + b |≤ k)

+N(r, 0; ag + b |≥ k + 1)].

So from (2.5) we obtain

N(r,∞; f) ≤
(

1 +
k

n + k + 1

)

[
N(r, 0; g) + N(r, 0; ag + b |≤ k) + N(r, 0; ag + b |≥ k + 1)

]

+
k

n + k + 1
N(r,∞; g) + S(r, g)

≤ n + 2k + 1
n + k + 1

[
1

n− 2k + 1
+

1
n + k + 1

+
1

n + 2k + 1

]
T (r, g)

+
k

n + k + 1
T (r, g) + S(r, g)

≤
(

2(n + 1)
(n + k + 1)(n− 2k + 1)

+
k

(n + k + 1)2
+

k + 1
n + k + 1

)

T (r, g) + S(r, g).

Using the second fundamental theorem of Nevanlinna we get

T (r, f) ≤ N(r,∞; f) + N(r, 0; f) + N(r, 0; af + b) + S(r, f)
≤ N(r,∞; f) + N(r, 0; f) + N(r, 0; af + b |≤ k)

+N(r, 0; af + b |≥ k + 1) + S(r, f)

≤
[

2(n + 1)
(n + k + 1)(n− 2k + 1)

+
k

(n + k + 1)2
+

k + 1
n + k + 1

]
T (r, g)

+
[

2(n + 1)
(n + 2k + 1)(n− 2k + 1)

+
1

n + k + 1

]
T (r, f) + S(r, f) + S(r, g).(2.6)

Similarly

T (r, g) ≤
[

2(n + 1)
(n + k + 1)(n− 2k + 1)

+
k

(n + k + 1)2
+

k + 1
n + k + 1

]
T (r, f)

+
[

2(n + 1)
(n + 2k + 1)(n− 2k + 1)

+
1

n + k + 1

]
T (r, g) + S(r, f) + S(r, g).(2.7)
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Adding (2.6) and (2.7) we obtain
[

n− 1
n + k + 1

− 2(n + 1)(2n + 3k + 2)
(n− 2k + 1)(n + 2k + 1)(n + k + 1)

− k

(n + k + 1)2

]

{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

i.e.,

[(n− 1)(n + k + 1)(n− 2k + 1)(n + 2k + 1)− 2(n + 1)(n + k + 1)(2n + 3k + 2)
−k(n− 2k + 1)(n + 2k + 1)]{T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that n ≥ 2k + 5. This proves the lemma. 2

Lemma 2.9. Let f and g be two transcendental entire function, let n, k are any
two positive integers and let P be a nonconstant polynomial. Then

(fn(af + b))(k)(gn(ag + b))(k) 6= P 2,

where a, b are any two nonzero constants.

Proof. Suppose that

(fn(af + b))(k)(gn(ag + b))(k) = P 2.

Let z0 be a zero of f with multiplicity p. Then clearly z0 is a zero of P . Since P is
a polynomial, f has a finite number of zeros. So we put f(z) = P1e

α, where α is a
nonconstant entire function and P1 is a polynomial. Now

(afn+1)(k) = t1(α′, α′′, ..., α(k), P1)e(n+1)α,(2.8)

(bfn)(k) = t0(α′, α′′, ..., α(k), P1)enα,(2.9)

where ti(α′, α′′, ..., α(k), P1) (i = 0, 1) are differential polynomials in α′, α′′, . . . ,
α(k) with coefficients which are rational functions in P1 or its derivatives. Obviously

ti(α′, α′′, ..., α(k), P1) 6= 0

for i = 0, 1, and

(fn(af + b))(k) 6= 0.

From (2.8) and (2.9) we have

t1(α′, α′′, ..., α(k), P1)eα(z) + t0(α′, α′′, ..., α(k), P1) 6= 0.(2.10)

Since α(z) is an entire function, we obtain T (r, α(j)) = S(r, f) for j = 1, 2, ..., k.
Thus T (r, ti) = S(r, f) for i = 0, 1. So from (2.10), Lemma 2.1 and Lemma 2.7 we
obtain

T (r, f) = T (r, t1eα) + S(r, f)
≤ N(r, 0; t1eα) + N(r, 0; t1eα + t0) + S(r, f)
≤ S(r, f),
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which is a contradiction. This completes the proof of the lemma. 2

Lemma 2.10. Let f and g be two transcendental meromorphic (entire) functions
and let n(≥ 1), k(≥ 1), be two integers. Suppose that F = (fn(af+b))(k)

P (z) and G =
(gn(ag+b))(k)

P (z) . If there exist two nonzero constants c1 and c2 such that N(r, c1; F ) =
N(r, 0; G) and N(r, c2; G) = N(r, 0;F ), then n ≤ 3k + 4 (n ≤ 2k + 3).

Proof. We prove the theorem for two transcendental meromorphic functions. By
the second fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0; F ) + N(r,∞; F ) + N(r, c1;F ) + S(r, F )
≤ N(r, 0; F ) + N(r, 0; G) + N(r,∞; F ) + S(r, F ).(2.11)

By (2.1), (2.2), (2.11) and Lemma 2.1 we obtain

(n + 1)T (r, f) ≤ T (r, F )−N(r, 0;F ) + Nk+1(r, 0; fn(af + b))
+O{log r}+ S(r, f)

≤ N(r, 0; G) + Nk+1(r, 0; fn(af + b)) + N(r,∞; f)
+O{log r}+ S(r, f)

≤ Nk+1(r, 0; fn(af + b)) + Nk+1(r, 0; gn(ag + b)) + N(r,∞; f)
+kN(r,∞; g) + O{log r}+ S(r, f) + S(r, g)

≤ (k + 3)T (r, f) + (2k + 2)T (r, g) + O{log r}
+S(r, f) + S(r, g).(2.12)

Similarly we obtain

(n + 1)T (r, g) ≤ (k + 3)T (r, g) + (2k + 2)T (r, f) + O{log r}
+S(r, f) + S(r, g).(2.13)

Combining (2.12), (2.13) and noting that O{log r} = o(T (r, f)) and O{log r} =
o(T (r, g)) we get

(n− 3k − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which gives n ≤ 3k + 4. This completes the proof of the lemma. 2

Lemma 2.11. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4
n

,

where n(≥ 3) is an integer. Then

fn(af + b) = gn(ag + b)

implies f = g, where a, b are two nonzero constants.
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Proof. We omit the proof since it can be carried out in the line of Lemma 6 [9]. 2

3. Proof of Theorems

Proof of Theorem 1.1. Let F (z) and G(z) be given as in Lemma 2.10. Then
F (z), G(z) are non-entire transcendental meromorphic functions that share (1, l)
except the the zeros of the polynomial P (z). So from (2.1) we obtain

N2(r, 0; F ) ≤ N2

(
r, 0; (fn(af + b))(k)

)
+ S(r, f)

≤ T
(
r, (fn(af + b))(k)

)
− (n + 1)T (r, f)

+Nk+2(r, 0; fn(af + b)) + S(r, f)
≤ T (r, F )− (n + 1)T (r, f) + Nk+2(r, 0; fn(af + b))

+O{log r}+ S(r, f).(3.1)

Again by (2.2) we have

N2(r, 0;G) ≤ kN(r,∞; f) + Nk+2(r, 0; gn(ag + b)) + S(r, g).(3.2)

From (3.1) we get

(n + 1)T (r, f) ≤ T (r, F ) + Nk+2(r, 0; fn(af + b))−N2(r, 0;F )
+O{log r}+ S(r, f).(3.3)

Now we consider the following three cases.

Case 1. Let l ≥ 2. Let (i) of Lemma 2.3 holds. Then using (3.2) we obtain from
(3.3)

(n + 1)T (r, f) ≤ N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + Nk+2(r, 0; fn(af + b))
+O{log r}+ S(r, f) + S(r, g)

≤ Nk+2(r, 0; fn(af + b)) + Nk+2(r, 0; gn(ag + b)) + 2N(r,∞; f)
+(k + 2)N(r,∞; g) + O{log r}+ S(r, f) + S(r, g)

≤ (k + 3){T (r, f) + T (r, g)}+ 2N(r,∞; f) + (k + 2)N(r,∞; g)
+O{log r}+ S(r, f) + S(r, g)

≤ [k + 5− 2Θ(∞, f) + ε]T (r, f) + [2k + 5− (k + 2)Θ(∞, g) + ε]
T (r, g) + S(r, f) + S(r, g)

≤ [3k + 10− 2Θ(∞, f)− 2Θ(∞, g)− k min{Θ(∞, f),Θ(∞, g)}
+2ε]T (r) + S(r).(3.4)

In a similar way we can obtain

(n + 1)T (r, g) ≤ [3k + 10− 2Θ(∞, f)− 2Θ(∞, g)− k min{Θ(∞, f),Θ(∞, g)}
+2ε]T (r) + S(r).(3.5)
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From (3.4) and (3.5) we obtain

[n− 3k − 9 + 2Θ(∞, f) + 2Θ(∞, g) + k min{Θ(∞, f), Θ(∞, g)} − 2ε]T (r) ≤ S(r),

contradicting with the facts that n ≥ 3k + 9, Θ(∞, f) + Θ(∞, g) > 4/n and ε > 0
be arbitrary. So by Lemma 2.3 either FG = 1 or F = G. Let FG = 1. Then

(fn(af + b))(k)(gn(ag + b))(k) = P 2,

a contradiction by Lemma 2.8. So we have F = G. That is

[fn(af + b)](k) = [gn(ag + b)](k).

Integrating we get

[fn(af + b)](k−1) = [gn(ag + b)](k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, from Lemma 2.10 we obtain n ≤ 3k + 4, a
contradiction. Hence ck−1 = 0. Repeating k-times, we obtain

fn(af + b) = gn(ag + b).(3.6)

Now the result follows from Lemma 2.11.

Case 2. Let l = 1 and H 6≡ 0. Using Lemma 2.4 and (3.2) we obtain from (3.3)

(n + 1)T (r, f) ≤ N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) +
1
2
N(r, 0; F )

+
1
2
N(r,∞;F ) + Nk+2(r, 0; fn(af + b))

+O{log r}+ S(r, f) + S(r, g)
≤ Nk+2(r, 0; fn(af + b)) + Nk+2(r, 0; gn(ag + b))

+
1
2
Nk+1(r, 0; fn(af + b)) +

k + 5
2

N(r,∞; f)

+(k + 2)N(r,∞; g)) + O{log r}+ S(r, f) + S(r, g)

≤ [2k +
13
2
− (

k

2
+ 2)Θ(∞, f)− 1

2
Θ(∞, f) + ε]T (r, f)

+[2k + 5− (
k

2
+ 2)Θ(∞, g)− k

2
Θ(∞, g) + ε]T (r, g)}

+O{log r}+ S(r, f) + S(r, g)

≤ [4k +
23
2
− k + 5

2
(Θ(∞, f) + Θ(∞, g)) + 2ε]T (r) + S(r).(3.7)

Similarly

(n + 1)T (r, g) ≤ [4k +
23
2
− k + 5

2
(Θ(∞, f) + Θ(∞, g)) + 2ε]T (r)

+S(r).(3.8)
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Combining (3.7) and (3.8) we obtain

[n− 4k − 21
2

+
k + 5

2
(Θ(∞, f) + Θ(∞, g))− 2ε]T (r) ≤ S(r),

a contradiction since n ≥ 4k+10, Θ(∞, f)+Θ(∞, g) > 4/n and ε > 0 be arbitrary.
We now assume that H = 0. That is

(
F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1
F − 1

=
A

G− 1
+ B,(3.9)

where A(6= 0) and B are constants. From (3.9) it is clear that F , G share the value
1 CM and so they share 1 with weight two. Hence we have n ≥ 3k + 9. Now we
discuss the following three subcases.

Subcase 1. Let B 6= 0 and A = B. Then from (3.9) we get

1
F − 1

=
BG

G− 1
.(3.10)

If B = −1, then from (3.10) we obtain

FG = 1,

a contradiction by Lemma 2.8.
If B 6= −1, from (3.10), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ; G) = N(r, 0;F ).
Now from the second fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0; G) + N

(
r,

1
1 + B

; G
)

+ N(r,∞; G) + S(r,G)

≤ N(r, 0; F ) + N(r, 0;G) + N(r,∞; G) + S(r,G).

Using (2.1) and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0; fn(af + b)) + kN(r,∞; f) + T (r,G)
+Nk+1(r, 0; gn(ag + b))− (n + 1)T (r, g) + N(r,∞; g)
+O{log r}+ S(r, g).

Hence

(n + 1)T (r, g) ≤ (2k + 2)T (r, f) + (k + 3)T (r, g) + S(r, g).

Thus we obtain

(n− 3k − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),
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a contradiction as n ≥ 3k + 9.

Subcase 2. Let B 6= 0 and A 6= B. Then from (3.9) we get F = (B+1)G−(B−A+1)
BG+(A−B)

and so N(r, B−A+1
B+1 ; G) = N(r, 0;F ). Proceeding as in Subcase 1 we obtain a

contradiction.

Subcase 3. Let B = 0 and A 6= 0. Then from (3.9) F = G+A−1
A and G = AF−(A−

1). If A 6= 1, we have N(r, A−1
A ; F ) = N(r, 0; G) and N(r, 1 − A; G) = N(r, 0; F ).

So by Lemma 2.10 we have n ≤ 3k + 6, a contradiction. Thus A = 1 and hence
F = G. Now using the same technique as used in Case 1 we can obtain (3.6) which
by Lemma 2.11 gives f = g.

Case 3. Let l = 0 and H 6≡ 0. Using Lemma 2.5 and (3.2) we obtain from (3.3)

(n + 1)T (r, f) ≤ N2(r, 0; G) + N2(r,∞; F ) + N2(r,∞; G) + 2N(r, 0; F )
+N(r, 0;G) + Nk+2(r, 0; fn(af + b)) + 2N(r,∞; F )
+N(r,∞;G) + O{log r}+ S(r, f) + S(r, g)

≤ Nk+2(r, 0; fn(af + b)) + Nk+2(r, 0; gn(ag + b))
+2Nk+1(r, 0; fn(af + b)) + Nk+1(r, 0; gn(ag + b))
+(2k + 4)(N(r,∞; f) + (2k + 3)N(r,∞; g))
+O{log r}+ S(r, f) + S(r, g)

≤ [5k + 11− (2k + 4)Θ(∞, f)− ε]T (r, f) + [4k + 8
−(2k + 3)Θ(∞, g)− ε]T (r, g) + O{log r}+ S(r, f) + S(r, g)

≤ [9k + 19− (2k + 3)(Θ(∞, f) + Θ(∞, g))
−min{Θ(∞, f), Θ(∞, g)}+ 2ε]T (r) + S(r).(3.11)

Similarly

(n + 1)T (r, g) ≤ [9k + 19− (2k + 3)(Θ(∞, f) + Θ(∞, g))
−min{Θ(∞, f),Θ(∞, g)}+ 2ε]T (r) + S(r).(3.12)

From (3.11) and (3.12) we get

[n− 9k − 18 + (2k + 3)(Θ(∞, f) + Θ(∞, g))
+ min{Θ(∞, f), Θ(∞, g)} − 2ε]T (r) ≤ S(r),

contradicts with the facts that n ≥ 9k + 18, Θ(∞, f) + Θ(∞, g) > 4/n and ε > 0
be arbitrary. We now assume that H = 0. Then proceeding in a similar manner as
in Case 2 we obtain f = g. This completes the proof of the theorem.

Proof of Theorem 1.2. Noting that N(r,∞; f) = 0, N(r,∞; g) = 0 and using
Lemma 2.9 instead of Lemma 2.8 and proceeding in the like manner as the proof
of Theorem 1.1 we obtain the result of the theorem.
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