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Abstract. Several interesting and useful extensions of some familiar special functions

such as Beta and Gauss hypergeometric functions and their properties have, recently,

been investigated by many authors. Motivated mainly by those earlier works, we establish

some fractional integral formulas involving the extended generalized Gauss hypergeomet-

ric function by using certain general pair of fractional integral operators involving Gauss

hypergeometric function 2F1, Some interesting special cases of our main results are also

considered.
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Throughout this paper, N, R, C, and Z−
0 denote the sets of positive inte-

gers, real numbers, complex numbers, and nonpositive integers, respectively, and
N0 := N∪{0}. In recent years, several interesting and useful extensions of some fa-
miliar special functions such as Beta and Gauss hypergeometric functions and their
properties have been investigated by many authors (see, e.g., [7, 8, 9, 14, 16, 17]
and see also, very recent work, [15]). Motivated mainly by those earlier works, we
establish some fractional integral formulas involving the extended generalized Gauss
hypergeometric function (1.10) by using certain general pair of fractional integral
operators involving Gauss hypergeometric function 2F1, which are given in Section
2 below. Some interesting special cases of our main results are also considered.

For our purpose, we begin by recalling some known functions and earlier works.
In 1997, Chaudhry et al. [9] presented the following extension of Euler’s Beta
function B(α, β):

(1.1) Bp (x, y) :=

∫ 1

0

tx−1 (1− t)
y−1

exp

{
−p

t (1− t)

}
dt (ℜ(p) > 0),

where the Beta function B(α, β) is a function of two complex variables α and β
defined by

(1.2) B(α, β) =


∫ 1

0

tα−1(1− t)β−1 dt (ℜ(α) > 0; ℜ(β) > 0),

Γ(α) Γ(β)

Γ(α+ β)
(α, β ∈ C \ Z−

0 )

and Γ is the familiar Gamma function. In the sequel, in 2004, by making use of
Bp (x, y), Chaudhary et al. [9] extended the Gauss’s hypergeometric function as
follows:

(1.3)
Fp (a, b; c; z) :=

∞∑
n=0

(a)n
Bp (b+ n, c− b)

B (b, c− b)

zn

n!

(ℜ(p) ≥ 0; |z| < 1; ℜ(c) > ℜ(b) > 0),

where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [26, p. 2 and
p. 5]):

(1.4)

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N)

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 ).

The generalized hypergeometric series pFq is defined by (see [19, p. 73]):

(1.5)
pFq

[
α1, . . . , αp;

β1, . . . , βq;
z

]
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z).
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Here p and q are positive integers or zero (interpreting an empty product as 1), and
we assume (for simplicity) that the variable z, the numerator parameters α1, . . . ,
αp, and the denominator parameters β1, . . . , βq take on complex values, provided
that no zeros appear in the denominator of (1.5), that is, that

(1.6) (βj ∈ C \ Z−
0 ; j = 1, . . . , q).

The special case 2F1(.) of (1.5) is called (Gauss) hypergeometric series.
In a similar manner, in 2011, Özergin et al. [17] introduced the following gen-

eralizations of (1.1) (see, e.g., [17, p. 4602, Eq.(4)]; see also [16, p. 32, Chapter
4.]):

(1.7)
B(α,β)

p (x, y) :=

∫ 1

0

tx−1 (1− t)
y−1

1F1

(
α;β;

−p
t (1− t)

)
dt

(ℜ(p) > 0; min(ℜ(x), ℜ(y), ℜ(α), ℜ(β)) > 0).

In this sequel, by applying to B
(α,α)
p (x, y), Özergin et al. introduced and studied a

further extension of Gauss’s hypergeometric functions as follows (see, e.g., [17, p.
4606, Section 3]; see also [16, p. 39, Chapter 4]):

(1.8)
F (α,β)
p (a, b; c; z) :=

∞∑
n=0

(a)n
B

(α,β)
p (b+ n, c− b)

B (b, c− b)

zn

n!

(ℜ(p) ≥ 0; |z| < 1; min{ℜ(α), ℜ(β)} > 0; ℜ(c) > ℜ(b) > 0).

Very recently, Srivastava et al. [25] introduced a further natural generalization
of the (1.7) and (1.8), respectively, in terms of the function Θ(κl; z) defined as
follows (see [25, p. 243, Eqs. (2.3) and (2.4)]):

(1.9)
B(κl)

p (x, y; p) :=

∫ 1

0

tx−1 (1− t)
y−1

Θ

(
κl;−

p

t(1− t)

)
dt

(ℜ(p) ≥ 0; min {ℜ(x), ℜ(y)} > 0)

and

(1.10)
F (κl)
p (a, b; c; z) :=

∞∑
n=0

(a)n
B

(κl)
p (b+ n, c− b; p)

B (b, c− b)

zn

n!

(|z| < 1; ℜ(c) > ℜ(b) > 0 and ℜ(p) ≥ 0),

where Θ(κl; z) is given by the following definition:

Definition.(see [25, p. 243, Eq. (2.1)]) Let a function Θ(κl; z) be a analytic within
the disk |z| < R (0 < R < ∞) and let its Taylor-Maclaurin coefficient be explicitly
denoted by the sequence {κl}l∈N0

. Suppose also that the function Θ(κl; z) can be
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continued in the right half-plane ℜ(z) > 0 with the asymptotic property given as
follows:

(1.11)

Θ(κl; z) ≡ Θ({κl}l∈N0
; z)

:=

{ ∑∞
l=0 κl

zl

l! (|z| < R; 0 < R <∞; κ0 = 1)
M0 z

ω exp(z)[1 + o( 1z )] (ℜ(z) → ∞; M0 > 0; ω ∈ C).

Remark 1. It is easy to that, by special choices of the sequence {κl}l∈N0
and

taking p = 0, the definitions (1.9) and (1.10) reduce to Beta function B(x, y) and
hypergeometric series 2F1(·), respectively.

The outlined above-mentioned detailed and systematic investigation was indeed
motivated largely by the demonstrated potential for applications of the more ex-
tended generalized Gauss hypergeometric function and their special cases in many
diverse areas of mathematical, physical, engineering and statistical sciences (see, for
details, [25] and the references cited therein).

2. Fractional Calculus of the Extended Generalized Hypergeometric
Functions

Recently fractional integral operators involving the various special functions
have been considered by many authors (see, e.g., [1]-[6], [10]-[12], [18, 20, 21, 22];
see also [24]). Here, in this section, we shall establish some fractional integral for-

mulas for the extended generalized Gauss hypergeometric type functions F
(κl)
p (·).

For our purpose, we begin by recalling the following pair of Saigo hypergeometric
operators of fractional integration. For x > 0, µ, ν, γ ∈ C and ℜ(α) > 0, we have

(2.1)
(
Iµ,ν,η0,x f(t)

)
(x) =

x−µ−ν

Γ(µ)

∫ x

0

(x− t)µ−1
2F1 (µ+ ν,−η;µ; 1− t/x) f(t)dt

and
(2.2)(

Jµ,ν,η
x,∞ f(t)

)
(x) =

1

Γ(µ)

∫ ∞

x

(t− x)µ−1 t−µ−ν
2F1 (µ+ ν,−η;µ; 1− x/t) f(t)dt,

where 2F1(·) is the Gauss hypergeometric series which is a special case of the gen-
eralized hypergeometric series pFq(·) in (1.5).

The operator Iµ,ν,η0,x (·) contains both the Riemann-Liouville and the Erdélyi-
Kober fractional integral operators by means of the following relationships:

(2.3)
(
Rµ

0,xf(t)
)
(x) =

(
Iµ,−µ,η
0,x f(t)

)
(x) =

1

Γ(µ)

∫ x

0

(x− t)µ−1f(t)dt

and

(2.4)
(
Eµ,η

0,x f(t)
)
(x) =

(
Iµ,0,η0,x f(t)

)
(x) =

x−µ−η

Γ(µ)

∫ x

0

(x− t)µ−1 tηf(t)dt,
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whereas the operator (2.2) unifies the Weyl type and the Erdélyi-Kober fractional
integral operators as follows:

(2.5)
(
Wµ

x,∞f(t)
)
(x) =

(
Jµ,−µ,η
x,∞ f(t)

)
(x) =

1

Γ(µ)

∫ ∞

x

(t− x)µ−1f(t)dt,

and

(2.6)
(
Kµ,η

x,∞f(t)
)
(x) =

(
Jµ,0,η
x,∞ f(t)

)
(x) =

xη

Γ(µ)

∫ ∞

x

(t− x)µ−1 t−µ−ηf(t)dt.

We use the following image formulas which are easy consequences of the oper-
ators (2.1) and (2.2) (see [21, 23]):

(2.7)
(
Iµ,ν,η0,x tλ−1

)
(x) =

Γ(λ) Γ(λ− ν + η)

Γ(λ− ν) Γ(λ+ µ+ η)
xλ−ν−1 (λ > 0, λ− ν + η > 0)

and

(2.8)

(
Jµ,ν,η
x,∞ tλ−1

)
(x) =

Γ(ν − λ+ 1) Γ(η − λ+ 1)

Γ(1− λ) Γ(ν + µ− λ+ η + 1)
xλ−ν−1

(β − λ+ 1 > 0, η − λ+ 1 > 0).

Applying (1.10) to the Saigo fractional integral operator (2.1), we obtain a fractional
integral formula asserted by Theorem 1.

Theorem 1. Let x > 0, ℜ(c) > ℜ(b) > 0 and the parameters µ, ν, η, ρ, e ∈ C be
such that

ℜ(µ) > 0, ℜ(p) ≥ 0 and ℜ (ρ) > max {0, ℜ(ν − η)} .

Then the following fractional integral formula holds true:

(2.9)

(
Iµ,ν,η0,x

[
tρ−1 F (κl)

p (a, b; c; et)
])

(x) = xρ−ν−1 Γ(ρ)Γ(ρ− ν + η)

Γ(ρ+ µ+ η)Γ(ρ− ν)

× 2F
(κl)
p+2 (a, b, ρ, ρ− ν + η; c, ρ− ν, ρ+ µ+ η ; ex) (|x| < 1).

Proof. For convenience and simplicity, we denote the left-hand side of the result
(2.9) by I. Applying (1.10) to the Saigo fractional integral operator (2.1), and
changing the order of integration and summation, which is valid under the condition
of Theorem 1, we find that

I =

(
Iµ,ν,η0,t

[
tρ−1

∞∑
n=0

(a)n
B

(κl)
p (b+ n, c− b; p)

B (b, c− b)

etn

n!

])
(x)

(2.9) =
∞∑

n=0

(a)n
B

(κl)
p (b+ n, c− b; p)

B (b, c− b)

en

n!

(
Iµ,ν,η0,t

{
tρ+n−1

} )
(x).
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Now, making use of (2.7), we obtain

I = xρ−ν−1
∞∑

n=0

(a)n
B

(κl)
p (b+ n, c− b; p)

B (b, c− b)

Γ(ρ+ n)Γ(ρ− ν + η + n)

Γ(ρ− ν + n)Γ(ρ+ µ+ η + n)

(ex)n

n!

= xρ−ν−1 Γ(ρ)Γ(ρ− ν + η)

Γ(ρ− ν)Γ(ρ+ µ+ η)

×
∞∑

n=0

(a)n
B

(κl)
p (b+ n, c− b; p)

B (b, c− b)

(ρ)n (ρ− ν + η)n
(ρ− ν)n (ρ+ µ+ η)n

(ex)n

n!
,

which, in view of (1.10), proves the required result (2.9). 2

Theorem 2. Let x > 0, ℜ(c) > ℜ(b) > 0 and the parameters µ, ν, η, ρ, c ∈ C
satisfying the following inequalities:

ℜ(µ) > 0, ℜ(p) ≥ 0 and ℜ (ρ) < 1 + min {ℜ(η),ℜ(ν)} .

Then the following fractional integral formula holds true:
(2.10)(

Jµ,ν,η
x,∞

[
tρ−1 F (κl)

p

(
a, b; c;

e

t

)])
(x) = xρ−ν−1 Γ(1− ρ+ ν)Γ(1− ρ+ η)

Γ(1− ρ)Γ(1− ρ− η + ν + µ)

× 2F
(κl)
p+2

(
a, b, 1− ρ+ ν, 1− ρ+ η; c, 1− ρ, 1− ρ+ µ+ ν − η;

e

x

)
(|x| < 1).

Proof. As in the proof of Theorem 1, taking the operator (2.2) and the result (2.8)
into account, one can easily prove Theorem 2. Therefore, we omit its details. 2

Interestingly, on setting ν = 0 and using the relations (2.4) and (2.6), Theorems
1 and 2 yield Corollaries 1 and 2, respectively.

Corollary 1. Let x > 0, ℜ(p) ≥ 0 and the parameters µ, η, ρ, e ∈ C be such
that ℜ(µ) > 0,ℜ(ρ) > 0 and ℜ (ρ) > R(−η). Then the right-side Erdélyi-Kober
fractional integrals of the generalized Gauss hypergeometric type functions are given
by

(2.11)

(
Eµ,η

0,x

[
tρ−1 F (κl)

p (a, b; c; et)
])

(x) = xρ−1 Γ(ρ− η)

Γ(ρ+ µ+ η)

× 1F
(κl)
p+1 (a, b, ρ− η; c, ρ+ µ+ η ; ex) (|x| < 1).

Corollary 2. Let x > 0, ℜ(p) ≥ 0 and the parameters µ, η, ρ, e ∈ C satisfying the
inequalities ℜ(µ) > 0, ℜ(ρ) > 0, ℜ (ρ) < 1 + ℜ(η). Then we have

(2.12)

(
Kµ,η

x,∞

[
tρ−1 F (κl)

p

(
a, b; c;

e

t

)])
(x) = xρ−1 Γ(1− ρ+ η)

Γ(1− ρ− η + µ)

× 1F
(κl)
p+1

(
a, b, 1− ρ+ η; c, 1− ρ+ µ− η;

e

x

)
(|x| < 1).
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Further, if we replace ν by −µ and make use of the relations (2.3) and (2.5), in
Theorems 1 and 2, we obtain yet another corollaries providing Riemann-Liouville
and Weyl fractional integrals of the generalized Gauss hypergeometric type function

pF
(κl)
q (·) asserted by Corollaries 3 and 4.

Corollary 3. Let x > 0, ℜ(p) ≥ 0 and the parameters µ, ρ ∈ C satisfying ℜ(µ) >
0, ℜ(ρ) > 0. Then we get

(2.13)

(
Rµ

0,x

[
tρ−1 F (κl)

p (a, b; c; et)
])

(x) = xρ+µ−1 Γ(ρ)

Γ(ρ+ µ)

× 1F
(κl)
p+1 (a, b, ρ; c, ρ+ µ ; ex) (|x| < 1).

Corollary 4. Let x > 0, ℜ(p) ≥ 0 and the parameters µ, ρ ∈ C satisfying the
inequalities ℜ(µ) > 0, ℜ(ρ) > 0. Then we obtain

(2.14)

(
Wµ

x,∞

[
tρ−1 F (κl)

p

(
a, b; c;

e

t

)])
(x) = xρ+µ−1Γ(1− ρ− µ)

Γ(1− ρ)

× 1F
(κl)
p+1

(
a, b, 1− ρ− µ; c, 1− ρ;

e

x

)
(|x| < 1).

Remark 2. It is noted that the results obtained here are useful in deriving various
fractional integral formulas for each of the families of the extended generalized
hypergeometric functions defined by (1.10). If we apply the asymptotic behavior of
Kummer’s confluent hypergeometric function at infinity:

(2.15) Φ(a; c; z) = 1F1(a; c; z) =
Γ(c)

Γ(a)
ez za−c

[
1 + o

(
1

z

)]
(ℜ(z) → ∞),

Theorems 1 and 2 provide, respectively, the known fractional integral formulas due
to Agarwal [1]. It is clear that Φ(a; c; z) is a special case of Θ(κl; z) (1.11) with the

sequence
{

(a)l
(c)l

}
l∈N0

. If we use this observation in Theorems 1 and 2 and set p = 0

in the resulting results, after a little simplification, we may obtain various fractional
integral formulas for the hypergeometric function 2F1.
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