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Abstract. In this paper, we introduce and investigate an interesting subclass MΣ(γ, λ, δ, ϕ)

of analytic and bi-univalent functions of complex order in the open unit disk U. For func-

tions belonging to the class MΣ(γ, λ, δ, ϕ) we investigate the coefficient estimates on the

first two Taylor-Maclaurin coefficients |a2| and |a3|. The results presented in this paper

would generalize and improve some recent works of [1],[5],[9].

1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anzn

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. Further, by
S we shall denote the class of all functions in A which are univalent in U. Some
of the important and well-investigated subclasses of the univalent function class S

include (for example) the class S∗(α) of starlike functions of order α in U and the
class K(α) of convex functions of order α in U.
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For two functions f and g, analytic in U, we say that the function f(z) is
subordinate to g(z) in U, and write

f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz function w(z), analytic in U, with

w(0) = 0 and |w(z)| < 1 (z ∈ U)

such that
f(z) = g(w(z)) (z ∈ U) .

In particular, if the function g is univalent in U, the above subordination is equiv-
alent to

f(0) = g(0) and f(U) ⊂ g(U).

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
,

where

(1.2) f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . . .

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are
univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1.1).
For a brief history and interesting examples of functions which are in (or which are
not in) the class Σ, together with various other properties of the bi-univalent func-
tion class Σ one can refer the work of Srivastava et al. [20] and references therein.
In fact, the study of the coefficient problems involving bi-univalent functions was
reviewed recently by Srivastava et al. [20]. Various subclasses of the bi-univalent
function class Σ were introduced and non-sharp estimates on the first two coeffi-
cients |a2| and |a3| in the Taylor-Maclaurin series expansion (1.1) were found in
several recent investigations (see, for example, [1] - [9], [11] - [13], [16] - [19] and
[21] - [24]). The aforecited all these papers on the subject were actually motivated
by the pioneering work of Srivastava et al. [20]. However, the problem to find the
coefficient bounds on |an| (n = 3, 4, . . . ) for functions f ∈ Σ is still an open problem.

Let ϕ be an analytic and univalent function with positive real part in U with
ϕ(0) = 1, ϕ′(0) > 0 and ϕ maps the unit disk U onto a region starlike with respect
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to 1, and symmetric with respect to the real axis. The Taylor’s series expansion of
such function is of the form

(1.3) ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + . . . with B1 > 0.

Throughout this paper we assume that the function ϕ satisfies the above conditions
one or otherwise stated.

We now introduce the function class S∗(γ, δ, ϕ) of Mocanu-convex functions
of complex order γ (γ ∈ C\{0}) of Ma-Minda type as follows :

S∗(γ, δ, ϕ) :=
{
f : f ∈ A and

1 +
1
γ

(
(1− δ)

zf ′(z)
f(z)

+ δ

(
1 +

zf ′′(z)
f ′(z)

)
− 1

)
≺ ϕ(z) (δ ≥ 0)

}
.

A function f is bi-Mocanu-convex function of complex order γ (γ ∈ C\{0}) in
U of Ma-Minda type if both f and f−1 are Mocanu-convex functions of complex
order γ (γ ∈ C\{0}) in U of Ma-Minda type. The class is denoted by S∗Σ(γ, δ, ϕ).
For γ = 1, the class S∗(γ, δ, ϕ) leads to the class M(δ, ϕ) of Mocanu-convex func-
tions in U of Ma-Minda type. A function f is bi-Mocanu-convex in U of Ma-Minda
type if both f and f−1 are Mocanu-convex in U of Ma-Minda type (see [1]). The
class is denoted by M∗

Σ(δ, ϕ). For δ = 0 and δ = 1, the class S∗(γ, δ, ϕ) reduces
respectively, to the familiar classes S∗(γ, ϕ) and K(γ, ϕ) of Ma-Minda starlike and
convex functions of complex order γ (γ ∈ C\{0}) in U (see [15]). Also, a function
f is bi-starlike and bi-convex of complex order γ (γ ∈ C\{0}) of Ma-Minda type
in U if both f and f−1 are, respectively, Ma-Minda starlike and Ma-Minda convex
of complex order γ (γ ∈ C\{0}) in U. These classes are denoted respectively by
S∗Σ(γ, ϕ) and KΣ(γ, ϕ) (see for more details [5]). Furthermore the classes S∗Σ(1, ϕ)
:= S∗Σ(ϕ) and KΣ(1, ϕ) := KΣ(ϕ) are, respectively bi-starlike of Ma-Minda type in
U and bi-convex of Ma-Minda type in U (see [1]) and for its other subclasses one
can refer the reference therein.

Recently Srivastava et al. [18] introduced a general class of bi-univalent func-
tions for investigating the extensions, generalizations and improvements of the vari-
ous subclasses of bi-univalent functions which were considered by a number of earlier
researchers (see, [1, 3, 6, 20, 24, 23] and others). With this motivation in this paper
we define the following unified subclass of bi-univalent function class Σ:

A function f ∈ Σ is said to be in the class MΣ(γ, λ, δ, ϕ), 0 6= γ ∈ C, δ ≥ 0, if
the following subordinations hold:

(1.4) 1 +
1
γ

(
(1− δ)

zF′λ(z)
Fλ(z)

+ δ

(
1 +

zF′′λ(z)
F′λ(z)

)
− 1

)
≺ ϕ(z)

and for g(w) = f−1(w),
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(1.5) 1 +
1
γ

(
(1− δ)

wG′λ(w)
Gλ(w)

+ δ

(
1 +

wG′′λ(w)
G′λ(w)

)
− 1

)
≺ ϕ(w),

where

Fλ(z) = (1− λ)f(z) + λzf ′(z), Gλ(w) = (1− λ)g(w) + λwg′(w) (0 ≤ λ ≤ 1).

It is interesting to note that the special values of δ, γ, λ and ϕ, the class
MΣ(γ, λ, δ, ϕ) unifies the following known and new classes:

1. MΣ(γ, 0, δ, 1+(1−2α)z
1−z ) = S∗Σ(γ, δ, α) (0 ≤ α < 1)

2. MΣ(γ, 0, δ,
(

1+z
1−z

)β

) = S∗Σ,β(γ, δ) (0 < β ≤ 1)

3. MΣ(1, 0, δ, 1+(1−2α)z
1−z ) = BΣ(α, δ) (0 ≤ α < 1) [9, Definition 3.1., p.1500]

4. MΣ(1, 0, δ,
(

1+z
1−z

)β

) = M
β,δ
Σ (0 < β ≤ 1) [9, Definition 2.1., p.1497]

5. MΣ(1, 0, δ, ϕ) = MΣ(δ, ϕ) [1, p.348]

6. MΣ(γ, 0, 0, ϕ) = S∗Σ(γ, ϕ) [5, p.50]

7. MΣ(1, 0, 0, ϕ) = S∗Σ(ϕ) [1, p.345]

8. MΣ(1, 0, 0, 1+(1−2α)z
1−z ) = S∗Σ(α) (0 ≤ α < 1)

9. MΣ(1, 0, 0,
(

1+z
1−z

)β

) = S∗Σ(β) (0 < β ≤ 1)

10. MΣ(γ, 0, 1, ϕ) = KΣ(γ, ϕ) [5, p.50]

11. MΣ(1, 0, 1, ϕ) = KΣ(ϕ) [1, p.345]

12. MΣ(1, 0, 1, 1+(1−2α)z
1−z ) = KΣ(α) (0 ≤ α < 1).

In this paper we introduce the unified bi-univalent function class MΣ(γ, λ, δ, ϕ)
as defined above and obtain the coefficient estimates for Taylor-Maclaurin coeffi-
cients |a2| and |a3| for functions belonging MΣ(γ, λ, δ, ϕ). Some interesting applica-
tions of the results presented here are also discussed.

In order to derive our results, we shall need the following lemma:

Lemma 2.1.(see [14]) If p ∈ P, then |pi| ≤ 2 for each i, where P is the family of
all functions p, analytic in U, for which

<{p(z)} > 0 (z ∈ U),
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where
p(z) = 1 + p1z + p2z

2 + · · · (z ∈ U).

2. Coefficient Estimates for the Function Class MΣ(γ, λ, δ, ϕ)

In this section we find the estimates for the coefficients |a2| and |a3| for functions
in the unified bi-univalent function class MΣ(γ, λ, δ, ϕ).

Theorem 2.2. If f ∈ MΣ(γ, λ, δ, ϕ), then

(2.1) |a2| ≤ |γ|B1
√

B1√
|γ(2(1+2δ)(1+2λ)−(1+3δ)(1+λ)2)B2

1+(1+δ)2(1+λ)2(B1−B2)|

and

(2.2) |a3| ≤ |γ|[B1+|B2−B1|]
2(1+2δ)(1+2λ)−(1+3δ)(1+λ)2 .

Proof. Since f ∈ MΣ(γ, λ, δ, ϕ), there exists two analytic functions r, s : U → U,
with r(0) = 0 = s(0), such that

(2.3) 1 +
1
γ

(
(1− δ)

zF′λ(z)
Fλ(z)

+ δ

(
1 +

zF′′λ(z)
F′λ(z)

)
− 1

)
= ϕ(r(z))

and

(2.4) 1 +
1
γ

(
(1− δ)

wG′λ(w)
Gλ(w)

+ δ

(
1 +

wG′′λ(w)
G′λ(w)

)
− 1

)
= ϕ(s(z)).

Define the functions p and q by

p(z) =
1 + r(z)
1− r(z)

= 1 + p1z + p2z
2 + p3z

3 + . . .

and

q(z) =
1 + s(z)
1− s(z)

= 1 + q1z + q2z
2 + q3z

3 + . . .

or equivalently,

r(z) =
p(z)− 1
p(z) + 1

(2.5)

=
1
2

(
p1z +

(
p2 − p2

1

2

)
z2 +

(
p3 +

p1

2

(
p2
1

2
− p2

)
− p1p2

2

)
z3 + . . .

)

and

s(z) =
q(z)− 1
q(z) + 1

(2.6)

=
1
2

(
q1z +

(
q2 − q2

1

2

)
z2 +

(
q3 +

q1

2

(
q2
1

2
− q2

)
− q1q2

2

)
z3 + . . .

)
.
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It is clear that p and q are analytic in U and p(0) = 1 = q(0). Also p and q have
positive real part in U, and hence |pi| ≤ 2 and |qi| ≤ 2. In the view of (2.3), (2.4),
(2.5) and (2.6), clearly

(2.7) 1 +
1
γ

(
(1− δ)

zF′λ(z)
Fλ(z)

+ δ

(
1 +

zF′′λ(z)
F′λ(z)

)
− 1

)
= ϕ

(
p(z)− 1
p(z) + 1

)

and

(2.8) 1 +
1
γ

(
(1− δ)

wG′λ(w)
Gλ(w)

+ δ

(
1 +

wG′′λ(w)
G′λ(w)

)
− 1

)
= ϕ

(
q(w)− 1
q(w) + 1

)
.

Using (2.5) and (2.6) together with (1.3), it is evident that

(2.9) ϕ

(
p(z)− 1
p(z) + 1

)
= 1 +

1
2
B1p1z +

(
1
2
B1

(
p2 − 1

2
p2
1

)
+

1
4
B2p

2
1

)
z2 + . . .

and

(2.10) ϕ

(
q(w)− 1
q(w) + 1

)
= 1 +

1
2
B1q1w +

(
1
2
B1

(
q2 − 1

2
q2
1

)
+

1
4
B2q

2
1

)
w2 + . . . .

Since f ∈ Σ is of the form (1.1), a computation shows that its inverse g = f−1 has
the expression given by (1.2). It follows from (2.7), (2.8), (2.9) and (2.10) that

(2.11)
1
γ

(1 + δ)(λ + 1)a2 =
1
2
B1p1

(2.12)
1
γ

[2(1 + 2δ)(1 + 2λ)a3 − (1 + 3δ)(1 + λ)2a2
2] =

1
2
B1

(
p2 − 1

2
p2
1

)
+

1
4
B2p

2
1

(2.13) − 1
γ

(1 + δ)(λ + 1)a2 =
1
2
B1q1

and

(2.14)
1
γ

[4((1 + 2δ)(1 + 2λ)− (1 + 3δ)(1 + λ)2)a2
2 − 2(1 + 2δ)(1 + 2λ)a3]

=
1
2
B1

(
q2 − 1

2
q2
1

)
+

1
4
B2q

2
1 .

From (2.11) and (2.13), it follows that

(2.15) p1 = −q1
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and

(2.16)
8
γ2

(1 + δ)2(λ + 1)2a2
2 = B2

1(p2
1 + q2

1).

Now (2.12), (2.14) and (2.16) yield

a2
2 =

γ2B3
1(p2 + q2)

4[γ(2(1 + 2δ)(1 + 2λ)− (1 + 3δ)(1 + λ)2)B2
1 + (1 + δ)2(1 + λ)2(B1 −B2)]

.

Thus the desired estimate on |a2| as asserted in (2.1), follows using the Lemma 2.1
that |p2| ≤ 2 and |q2| ≤ 2. By subtracting (2.12) from (2.14) and a computation
using (2.11) finally lead to

a3 =
γB1(p2 + q2) + γ(B2 −B1)p2

1

8(1 + 2δ)(1 + 2λ)− 4(1 + 3δ)(1 + λ)2
+

B1γ(p2 − q2)
8(1 + 2δ)(1 + 2λ)

.

Applying Lemma 2.1 once again, we readily get the estimate given in (2.2). 2

3. Consequences and Corollaries

Taking δ = 0 and λ = 0 in Theorem 2.2, we have the following coefficient
estimates for bi-starlike functions of complex order.

Corollary 3.1.([5]) If f ∈ S∗Σ(γ, ϕ), then

|a2| ≤ |γ|B1

√
B1√

|γB2
1 + (B1 −B2)|

and |a3| ≤ |γ|[B1 + |B2 −B1|].

Taking δ = 1 and λ = 0 in Theorem 2.2, we have the following coefficient
estimates for bi-convex functions of complex order.

Corollary 3.2.([5]) If f ∈ KΣ(γ, ϕ), then

|a2| ≤ |γ|B1

√
B1√

|2[γB2
1 + 2(B1 −B2)]|

and |a3| ≤ |γ|[B1 + |B2 −B1|]
2

.

Remark 3.3. For γ = 1, putting ϕ(z) =
(

1+z
1−z

)β

(0 < β ≤ 1) and ϕ(z) = 1+(1−2α)z
1−z

in Corollary 3.1 we have results as in [1, Remark 2.2] and taking ϕ(z) = 1+(1−2α)z
1−z

(0 ≤ α < 1) in Corollary 3.2 the estimates coincide with [1, Remark 2.3].

Taking λ = 0 in Theorem 2.2, we have the following coefficient estimates for
bi-Mocanu-convex functions of complex order γ of Ma-Minda type.

Corollary 3.4. If f ∈ MΣ(γ, δ, ϕ), then

|a2| ≤ |γ|B1

√
B1√

|(δ + 1)[γB2
1 + (δ + 1)(B1 −B2)]|
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and

|a3| ≤ |γ|[B1 + |B2 −B1|]
δ + 1

.

Remark 3.5. For γ = 1, Corollary 3.4 reduces to estimates in [1, Theorem 2.3,
p.348]. If we set γ = 1 in Corollary 3.4, then for ϕ(z) = 1+(1−2α)z

1−z (0 ≤ α < 1) and

ϕ(z) =
(

1+z
1−z

)β

(0 < β ≤ 1), it respectively reduces to [9, Theorem 3.2, p.1500] and
[9, Theorem 2.2, 1498].

Remark 3.6. Taking δ = 0, we have the class MΣ(γ, λ, 0, ϕ) ≡ PΣ(γ, λ, ϕ) as
defined below:

A function f ∈ Σ is said to be in the class PΣ(γ, λ, ϕ), 0 6= γ ∈ C, 0 ≤ λ ≤ 1, if
the following subordinations hold:

1 +
1
γ

(
zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)
− 1

)
≺ ϕ(z)

and

1 +
1
γ

(
wg′(w) + λw2g′′(w)

(1− λ)g(w) + λwg′(w)
− 1

)
≺ ϕ(w),

where g(w) = f−1(w). A function in the class PΣ(γ, λ, ϕ) is called both bi-λ−convex
functions and bi-λ-starlike functions of complex order γ of Ma-Minda type.

For functions in the class PΣ(γ, λ, ϕ), the following coefficient estimation holds.

Corollary 3.7.([5]) If f ∈ PΣ(γ, λ, ϕ), then

|a2| ≤ |γ|B1

√
B1√

|γ(1 + 2λ− λ2)B2
1 + (1 + λ)2(B1 −B2)|

and

|a3| ≤ |γ|[B1 + |B2 −B1|]
1 + 2λ− λ2

.

Remark 3.8. Taking δ = 1, we have the class MΣ(γ, λ, 1, ϕ) ≡ KΣ(γ, λ, ϕ) as
defined below:

A function f ∈ Σ is said to be in the class KΣ(γ, λ, ϕ), 0 6= γ ∈ C, 0 ≤ λ ≤ 1,
if the following subordinations hold:

1 +
1
γ

(
zf ′(z) + (1 + 2λ)z2f ′′(z) + λz3f ′′′(z)

zf ′(z) + λz2f ′′(z)
− 1

)
≺ ϕ(z)

and

1 +
1
γ

(
wg′(w) + (1 + 2λ)w2g′′(w) + λw3g′′′(w)

wg′(w) + λw2g′′(w)
− 1

)
≺ ϕ(w),
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where g(w) = f−1(w).

For functions in the class KΣ(γ, λ, ϕ), the following coefficient estimation holds.

Corollary 3.9. If f ∈ KΣ(γ, λ, ϕ), then

|a2| ≤ |γ|B1

√
B1√

|γ(2 + 4λ− 4λ2)B2
1 + 4(1 + λ)2(B1 −B2)|

and

|a3| ≤ |γ|[B1 + |B2 −B1|]
2 + 4λ− 4λ2

.

Remark 3.10. Furthermore, various other interesting corollaries and consequences
of our results could be derived similarly by specializing ϕ.
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bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl., 3(1)(2015), 133–
140.



714 N. Magesh and V. K. Balaji

[9] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat.
Math. Forum., 7(2012), 1495–1504.

[10] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent func-
tions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169,
Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.

[11] N. Magesh and V. Prameela, Coefficient estimate problems for certain subclassesof
analytic and bi-univalent functions, Afrika Matematika, (2013), 1–6 (On-line version).

[12] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for cer-
tain subclasses of bi-univalent function, Abstr. Appl. Anal. 2013, Art. ID 573017,
1–3.

[13] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for certain classes
of meromorphic bi-univalent functions, Asian-Eur. J. Math., 7(1)(2014), 1–9.

[14] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

[15] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike
and convex functions of complex order, Hacettepe J. Math. Stat., 34(2005), 9–15.

[16] S. Sivaprasad Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coef-
ficients of bi-univalent functions, Tamsui Oxford J. Inform. Math. Sci., 29(4)(2013),
487–504.
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