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Abstract. We introduce the warping crossing polynomial of an oriented knot diagram by

using the warping degrees of crossing points of the diagram. Given a closed transversely

intersected plane curve, we consider oriented knot diagrams obtained from the plane curve

as states to take the sum of the warping crossing polynomials for all the states for the plane

curve. As an application, we show that every closed transversely intersected plane curve

with even crossing points has two independent canonical orientations and every based

closed transversely intersected plane curve with odd crossing points has two independent

canonical orientations.

1. Introduction

Throughout this paper except Section 4, knot diagrams are oriented and on S2.
A based diagram Db is a diagram D with a base point b. A crossing point of D is a
warping crossing point of Db if we come to the crossing point as an under-crossing
first when we go along D with the orientation by starting from b. The warping
degree d(Db) of Db is the number of warping crossing points of Db [4]. The warp-
ing degree is also defined for link diagrams and spatial graphs [5]. We note that
the similar notions are studied by Fujimura [1], Fung [2], Lickorish and Millett [6],
Okuda [7] and Ozawa [8] considering the ascending number with an orientation. We
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define a weight of each crossing point c of a knot diagram D as follows: Take a base
point b which is just before the over-crossing of c (Figure 1). The crossing weight

b c

Figure 1:

Xc(t) of c is defined to be td(c), where d(c) = d(Db). Now we define the warping
crossing polynomial XD(t) of a knot diagram D to be the sum of crossing weights
for all crossing points of D, i.e., XD(t) =

∑
cXc(t). For example, the diagram D in

Figure 2 has XD(t) = 1 + t+ t2. Let c(D) be the crossing number of D. We have

D

1

2

0

Figure 2:

lim
t→1

XD(t) = c(D)

by definition. Hence XD(t) is a quantization of the crossing number of D. Let
e be an edge of D. We denote d(Db) by d(e), where b is a base point on e. Let
P be a projection of a knot with the crossing number c(P ) = n ≥ 1. We obtain
2n diagrams D from P by giving over/under information to each double point as
shown in Figures 4, 5. We call each such diagram D a state for P . Because of the
over/under information, states for P have various warping crossing polynomials.
Then, we consider the state sum ZP (t) =

∑
DXD(t) of P , where

∑
D is the sum

for all the states for P . For example, we have ZP (t) = 8(1 + t)3 for the knot
projection P with c(P ) = 4 in Figure 4. We have the following theorem:

Theorem 1.1. (i) Let P be a knot projection with c(P ) = n ≥ 1. Then,

ZP (t) = 2n(1 + t)n−1.
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(ii) Let D be a knot diagram, and D′ the diagram obtained from D by a crossing
change at a crossing point p of D. Then,

XD(t)− tXD′(t) = (1− t)A,

where A is the sum of td(e) for all edges e from the under-crossing of p to the
over-crossing of p.

The proof is given in Section 2. The warping polynomial WD(t) of a knot diagram
D is the sum of td(e) for all edges e [12]. For example, the diagram D in Figure 3
has WD(t) = 1 + 2t+ 2t2 + t3. We have the following theorem:

D
1

2
3

2

10

Figure 3:

Theorem 1.2. Let D be a knot diagram with c(D) ≥ 1. We have

XD(t) =
WD(t)

1 + t
.

The proof is given in Section 3. The rest of this paper is organized as follows: In
Section 2, we study a state sum for a plane curve by considering knot diagrams
obtained from the plane curve as states. In Section 3, we consider properties of
the warping crossing polynomial by comparing with the warping polynomial. In
Section 4, we show that every based plane curve in R2 has a canonical orientation.

2. State Sum

In this section, we study knot projections by considering the distribution of the
states.

Proof of Theorem 1.1.
(i) We show that the sum

∑
DWD(t) of the warping polynomials WD(t) for all

the states D for P is 2n(1 + t)n. Let e be an edge of P , and let m = 1, 2, . . . or n.
We can give all the double points of P over/under information so that d(e) = m in

nCm ways as shown in Figure 6.
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(ii) Let A (resp. B) be the sum of td(e) (resp. td(e)−1) for all edges e from the under-
crossing (resp. over-crossing) of p to the over-crossing (resp. under-crossing) of p.
By the proof of Lemma 4.4 in [12] and Theorem 1.2, we have (t+1)XD(t) = A+ tB
and (t + 1)XD′(t) = tA + B, and therefore we have XD(t) − tXD′(t) = (1 − t)A,
XD′(t)−tXD(t) = (1−t)B, and XD(t)+XD′(t) = A+B. Hence, only the equation
XD(t)− tXD′(t) = (1− t)A is sufficient. 2
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Figure 4:

Hence∑
D

WD(t) = 2n× nC0 + 2n× nC1t+ 2n× nC2t
2 + · · ·+ 2n× nCnt

n

= 2n(1 + t)n

because P has 2n edges.
(ii) Let A (resp. B) be the sum of td(e) (resp. td(e)−1) for all edges e from the under-
crossing (resp. over-crossing) of p to the over-crossing (resp. under-crossing) of p.
By the proof of Lemma 4.4 in [12] and Theorem 1.2, we have (t+1)XD(t) = A+ tB
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eP m=1 b b b b

Figure 6:
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and (t + 1)XD′(t) = tA + B, and therefore we have XD(t) − tXD′(t) = (1 − t)A,
XD′(t)−tXD(t) = (1−t)B, and XD(t)+XD′(t) = A+B. Hence, only the equation
XD(t)− tXD′(t) = (1− t)A is sufficient. 2

Let spanf(t) be the span of a polynomial f(t). We have the following corollary:

Corollary 2.1. Let D and D′ be diagrams as above. We have

|spanXD′(t)− spanXD(t)| ≤ 2.

3. Warping Crossing Polynomial

In this section, we prove Theorem 1.2 and show properties of the warping cross-
ing polynomial. We prove Theorem 1.2.

Proof of Theorem 1.2. If D has n over-crossings shown in the left hand in Figure
7, then D has also n under-crossings shown in the right hand of Figure 7. In other

k k+1 k+1 k

Figure 7:

words, if there are n edges e such that d(e) = k and the endpoints are over-crossings,
then there are also n edges e such that d(e) = k + 1 and the endpoints are under-
crossings. Since the crossing weight of the crossing point of the left hand of Figure
7 is tk, the sum of td(e) for all the edges e of D whose endpoints are over-crossings
is equal to

∑
c t

d(c) = XD(t), and therefore that for all the edges e of D whose
endpoints are under-crossings is

∑
c t

d(c)+1 = tXD(t). Hence WD(t), which is the
sum of td(e) for all the edges, is (1 + t)XD(t). 2

Then, XD(t) has some properties as WD(t) has in [12]:

Corollary 3.1. Let −D be a knot diagram D with the orientation reversed, and
D∗ the mirror image of D. We have X−D(t) = XD∗(t) = tn−1XD(t−1), where
n = c(D).

Corollary 3.2. A polynomial f(t) is a warping crossing polynomial of a knot
diagram D with c(D) = n ≥ 1 if and only if f(t) = m0t

d +m1t
d+1 + · · ·+mst

d+s,
where mi = 1, 2, . . . (i = 0, 1, . . . , s), d, s = 0, 1, . . . and m0 +m1 + · · ·+ms = n.

A knot diagram D is an alternating diagram if we come to crossing points as an
over-crossing and as an under-crossing alternately when we go along D. A bridge
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in a knot diagram D is a path on D between under-crossings which has no under-
crossings and at least one over-crossing in the interior. A knot diagram D is a
one-bridge diagram if D has exactly one bridge. The warping crossing polyno-
mial characterizes an alternating diagram and a one-bridge diagram as the warping
polynomial characterizes in [12]:

Corollary 3.3. A knot diagram D with c(D) = n ≥ 1 is an alternating diagram if
and only if XD(t) = ntd (d = 0, 1, . . . ).

Remark 3.4. An alternating diagram D with c(D) ≥ 1 has constant crossing
weights at all the crossing points (see Figure 8).

1 1
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2

2

2

2

Figure 8:

Corollary 3.5. A knot diagram D with c(D) = n ≥ 1 is a one-bridge diagram if
and only if XD(t) = 1 + t+ t2 + · · ·+ tn−1.

Remark 3.6. A one-bridge diagram has different crossing weights at all the crossing
points (see Figure 9).
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Figure 9:

A spatial arc diagram is a diagram of a spatial arc. we remark that we can define the
warping polynomial WS(t) and the warping crossing polynomial XS(t) of a spatial
arc diagram S. For example, we have WS(t) = 2 + 5t+ 2t2 and XS(t) = 1 + 3t for
the spatial arc diagram S in Figure 10.
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Figure 10:

4. Orientations of Plane Curves

In this section we show that we can give each based plane curve on R2 a canon-
ical orientation by using the warping degrees. We first review the warping degree of
a (non-based) knot diagram. The warping degree d(D) of an oriented knot diagram
D is the minimal warping degree d(Db) of Db for all base points b of D [4]. The
following theorem is shown in [10]:

Theorem 4.1.([10]) Let D be an oriented knot diagram with c(D) ≥ 1. We have

d(D) + d(−D) + 1 ≤ c(D).

Further, the equality holds if and only if D is an alternating diagram.

We have the following corollary:

Corollary 4.2. Let D be an oriented alternating knot diagram with non-zero even
crossings. Then, XD(t) ̸= X−D(t).

Proof. We have d(D) + d(−D) = c(D)− 1 because D is alternating. Since c(D) is
even, the value d(D) + d(−D) is odd. Hence the crossing weights of the crossing
points of −D are different from that of D. 2

Now we discuss the orientations of plane curves. We have the following theorem:

Theorem 4.3. (1) Every closed transversely intersected curve C with even crossing
points on R2 has two independent canonical orientations.
(2) Every based closed transversely intersected curve Cb with odd crossing points on
R2 has two independent canonical orientations.

Proof. (1) We give C with even crossing points one orientation in the following
order: First, we explain how to obtain an alternating diagram uniquely from C.
After that, we give the alternating diagram the canonical orientation. Apply C
the checkerboard coloring such that the outer region is colored white. Then we
obtain an alternating diagram D uniquely by giving each double point over/under
information as shown in Figure 11. If C has no crossing point, then we consider
as D a knot diagram obtained from C by taking connected sums with two positive
one-crossing knot diagrams in the black region. Since c(D) is non-zero even, we can
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Figure 11:

give D the orientation uniquely so that d(D) < d(−D) by the proof of Corollary
4.2. By projection, C is also oriented.
The other orientation is given by using the rotation number. The rotation number
rot(E) of an oriented closed curve E on R2 is l+(E) − l−(E), where l+(E) (resp.
l−(E)) is the number of circles with clockwise (resp. counter-clockwise) orientations
obtained by splicing E at all the crossing points. (This sign is different from the
usual convention.) Note that rot(E) is odd if c(E) is even, and that we have
rot(−E) = −rot(E). Hence for non-oriented closed curve C, we can give C the
orientation uniquely so that rot(C) is positive. Figure 12 shows that these two
orientations of C are independent.

C D C

Figure 12:

(2) We give Cb with odd crossing points one orientation as follows: We apply Cb the
checkerboard coloring as above and we obtain the alternating diagram Db. Apply
the connected sum of a knot diagram with exactly one positive crossing to the edge
with the base point b in the black region, and we obtain D′ (see Figure 13). Since D′

is alternating and with even crossings, D′ has the canonical orientation. Therefore
Db and Cb are also oriented.
The other orientation of Cb with the checkerboard coloring is the orientation such
that at the base point b the black region lies on the right. Figure 13 shows that
these two orientations of Cb are independent.
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D’C Cb b

Figure 13:

The first orientations in (1) and (2) were given in the first version of this paper and
the second orientations in (1) and (2) were suggested later by K. Taniyama and V.
Turaev, respectively. It is an interesting question to explain a difference between
the two independent orientations in (1) and (2). We have the following corollary:

Corollary 4.4. (1) For every oriented closed transversely intersected curve C with
even crossing points on R2, there is no orientation-preserving homeomorphism from
R2 to R2 sending C to −C.
(2) For every based oriented closed transversely intersected curve Cb with odd cross-
ing points on R2, there is no orientation-preserving, base-point-preserving homeo-
morphism from R2 to R2 sending Cb to −Cb.

Remark 4.5. If C with odd crossing points is non-based, the corollary above does
not hold (see Figure 14).

Remark 4.6. Theorem 4.3 (2) and Corollary 4.4 (2) hold on S2 in place of R2.
In fact, the number of regions divided by C is c(C) + 2 which is odd. Hence we



Quantization of the Crossing Number of a Knot Diagram 751
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Figure 14:

can take the unique checkerboard coloring so that the number of black regions is
greater than the number of white regions.
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