DOI QR코드

DOI QR Code

Study on the Drivers' Response Characteristics Using Spectral Analysis of Car Following Data

차량 추종자료의 파동해석을 통한 운전자 반응 특성 연구

  • CHAE, Chandle (Dept. of Road Transport, The Korea Transport Institute) ;
  • OH, Sei-Chang (Department of Transportation Systems Engineering, Ajou University) ;
  • KIM, Youngho (Department of Transport Safety and Highway, The Korea Transport Institute) ;
  • LEE, Jun (Department of Transport Safety and Highway, The Korea Transport Institute)
  • 채찬들 (한국교통연구원 도로교통연구본부) ;
  • 오세창 (아주대학교 교통시스템공학과) ;
  • 김영호 (한국교통연구원 교통안전도로본부) ;
  • 이준 (한국교통연구원 교통안전도로본부)
  • Received : 2015.04.01
  • Accepted : 2015.07.16
  • Published : 2015.08.31

Abstract

This paper developed a method analyze drivers' response characteristics using spectral analysis with car following data. Cross-correlation function and cross spectrum are produced by Fourier transform from speed fluctuations of leading vehicle and following vehicle during the designated time ${\tau}$. Based on the analysis data, a process to calculate the reaction time and stimulus-adaption index of following vehicle was developed and 170 cases of field data was applied. It was reported average of 0.654 and 2.091 seconds of stimulus-adaption index and reaction time respectively. In conclusion, the developed indexes might contribute to enhance vehicle control of autonomous vehicle more efficient and safer.

본 논문에서는 파동해석 기법을 활용하여 추종관계인 두 차량의 속도 파동으로부터 개별 운전자의 반응특성을 분석할 수 있는 방법론을 개발하였다. 선행차량 속도 파동과 임의의 시간 ${\tau}$만큼 지연된 후행차량 속도 파동의 푸리에 변환을 통해 상호상관함수와 상호 스펙트럼을 산출하고 상호상관계수를 도출함으로써 (1)후행차량의 반응시간과 (2)후행차량의 자극순응지수를 도출하는 방법론을 개발하였고, 현장에서 수집된 170건의 추종 자료에 적용한 결과, 자극순응지수는 평균 0.654로 나타났고, 반응시간은 평균 2.091초인 것으로 분석되었다. 이러한 운전자 반응특성 지수는 자율주행차량과 일반차량이 혼재된 교통류에서 자율주행차량의 안전하고 효율적인 경로계획 수립을 위하여 주변 차량의 운전행태 특성을 반영한 의사결정과정에 유효하게 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. Chandler R. E., Herman R., Montroll E. W. (1958), Traffic Dynamics: Studies in Car Following, Operations Research, 6(2), 165-184. https://doi.org/10.1287/opre.6.2.165
  2. Edie L. C. (1960), Car Following and Steady State Theory for Non-congested Traffic, Operations Research, 9(1), 66-76. https://doi.org/10.1287/opre.9.1.66
  3. Gazis D. C., Herman R., Potts R. B. (1959), Car Following Theory of Steady State Traffic Flow, Operations Research 7(4), 499-505. https://doi.org/10.1287/opre.7.4.499
  4. Gazis D. C., Herman R., Rothery R. W. (1961), Nonlinear Follow the Leader Models of Traffic Flow, Operations Research, 9(4), 545-567. https://doi.org/10.1287/opre.9.4.545
  5. Gerlough D. L., Huber M. J. (1975), Traffic Flow Theory, TRB Special Report 165, 87.
  6. Gipps P. G. (1981), A Behavioural Car-following Model for Computer Simulation, Transportation Research part B, 15(2), 105-111. https://doi.org/10.1016/0191-2615(81)90037-0
  7. Helly W. (1959), Simulation of Bottlenecks in Single Lane Traffic Flow, In Proceedings of the Symposium on Theory of Traffic Flow, Research Laboratories, General Motors, 207-238.
  8. Hino M. (2000), Spectral analysis, Science & Technology, 40-85.
  9. Jean Baptiste Joseph baron Fourier (1878), The Analytical Theory of Heat, Cambridge University Press, 168-209.
  10. Ministry of Land, Transport and Maritime Affairs (2009), Explanation Book of Standards for Highway Design and Facilities, 288.
  11. Transnational College of LEX (2010), Rules of Waves, Gbrain, 92-548.
  12. Vinay L. Ingle, John G. Proakis (2014), Essentials of Digital Signal Processing Using MATLAB, CENGAGE Learning, 61-108.