DOI QR코드

DOI QR Code

Chemical diversity of ginseng saponins from Panax ginseng

  • Received : 2014.11.05
  • Accepted : 2014.12.25
  • Published : 2015.10.15

Abstract

Ginseng, a perennial plant belonging to the genus Panax of the Araliaceae family, is well known for its medicinal properties that help alleviate pathological symptoms, promote health, and prevent potential diseases. Among the active ingredients of ginseng are saponins, most of which are glycosides of triterpenoid aglycones. So far, numerous saponins have been reported as components of Panax ginseng, also known as Korean ginseng. Herein, we summarize available information about 112 saponins related to P. ginseng; >80 of them are isolated from raw or processed ginseng, and the others are acid/base hydrolysates, semisynthetic saponins, or metabolites.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. Yun TK. Brief introduction of Panax ginseng C. A. Meyer. J Korean Med Sci 2001;16:S3-5. https://doi.org/10.3346/jkms.2001.16.S.S3
  2. Hu SY. The genus Panax (Ginseng) in Chinese medicine. Econ Bot 1976;30:11-28. https://doi.org/10.1007/BF02866780
  3. Roskov Y, Kunze T, Orrell T, Abucay L, Paglinawan L, Culham A, Bailly N, Kirk P, Bourgoin T, Baillargeon G, et al., editors. Species 2000 & ITIS catalogue of life; 2014. 2014 Annual Checklist. Digital resource at, www.catalogueoflife.org/annual-checklist/2014. Species 2000: Naturalis, Leiden, the Netherlands.
  4. Hu SY. A contribution to our knowledge of ginseng. Am J Chin Med 1977;5:1-23. https://doi.org/10.1142/S0192415X77000026
  5. Petkov W. Pharmacological studies of the drug P. ginseng C. A. Meyer. Arzneim Forsch 1959;9:305-11.
  6. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35: 389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  7. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-$Ser^{157}$ phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  8. Siddiqi MH, Siddiqi MZ, Ahn SG, Kang S, Kim YJ, Sathishkumar N, Yang DU, Yang DC. Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res 2013;37:261-8. https://doi.org/10.5142/jgr.2013.37.261
  9. Kang KS, Ham JY, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
  10. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 2014;38:89-96. https://doi.org/10.1016/j.jgr.2013.10.001
  11. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  12. Elyakov GB, Strigina LI, Uvarova NI, Vaskovsky VE, Dzizenko AK, Kochetkov NK. Glycosides from ginseng roots. Tetrahedron Lett 1964;5:3591-7. https://doi.org/10.1016/S0040-4039(01)89378-3
  13. Tansakul P, Shibuya M, Kushiro T, Ebizuka Y. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 2006;580:5143-9. https://doi.org/10.1016/j.febslet.2006.08.044
  14. Shibata S, Tanaka O, Sado M, Tsushima S. On genuine sapogenin of ginseng. Tetrahedron Lett 1963;4:795-800. https://doi.org/10.1016/S0040-4039(01)90718-X
  15. Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T. Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem Pharm Bull 1966;14:595-600. https://doi.org/10.1248/cpb.14.595
  16. Yahara S, Tanaka O, Komori T. Saponins of the leaves of Panax ginseng C. A. Meyer. Chem Pharm Bull 1976;24:2204-8. https://doi.org/10.1248/cpb.24.2204
  17. Besso H, Kasai R, Saruwatari Y, Fuwa T, Tanaka O. Ginsenoside-Ra1 and ginsenoside-Ra2, new dammarane-saponins of ginseng roots. Chem Pharm Bull 1982;30:2380-5. https://doi.org/10.1248/cpb.30.2380
  18. Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T. Further studies on dammarane-saponins of ginseng roots. Chem Pharm Bull 1984;32:1188-92. https://doi.org/10.1248/cpb.32.1188
  19. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S. Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro, -Rb1, -Rb2, -Rc and -Rd. Chem Pharm Bull 1974;22:421-8. https://doi.org/10.1248/cpb.22.421
  20. Kasai R, Besso H, Tanaka O, Saruwatari Y, Fuwa T. Saponins of red ginseng. Chem Pharm Bull 1983;31:2120-5. https://doi.org/10.1248/cpb.31.2120
  21. Yahara S, Kaji K, Tanaka O. Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C. A. Meyer. Chem Pharm Bull 1979;27:88-92. https://doi.org/10.1248/cpb.27.88
  22. Kondo N, Shoji J, Tanaka O. Studies on the constituents of Himalayan ginseng, Panax pseudoginseng. I. the structures of the saponins. (1). Chem Pharm Bull 1973;21:2705-11. https://doi.org/10.1248/cpb.21.2705
  23. Sanada S, Shoji J. Studies on the saponins of ginseng. III. Structures of ginsenoside-Rb3 and 20-glucoginsenoside-Rf. Chem Pharm Bull 1978;26: 1694-7. https://doi.org/10.1248/cpb.26.1694
  24. Yahara S, Matsuura K, Kasai R, Tanaka O. Saponins of buds and flowers of Panax ginseng C. A. Meyer. (1). Isolation of ginsenosides-Rd, -Re, and -Rg1. Chem Pharm Bull 1976;24:3212-3. https://doi.org/10.1248/cpb.24.3212
  25. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies on crude drug precession. I. On the constituents of Ginseng Radix rubra (1). Yakugaku Zasshi 1983;103:612-22. https://doi.org/10.1248/yakushi1947.103.6_612
  26. Baek NI, Kim JM, Park JH, Ryu JH, Kim DS, Lee YH, Park JD, Kim SI. Ginsenoside Rs3, a genuine dammarane-glycoside from Korean red ginseng. Arch Pharm Res 1997;20:280-2. https://doi.org/10.1007/BF02976158
  27. Ruan CC, Liu Z, Li X, Liu X, Wang LJ, Pan HY, Zheng YN, Sun GZ, Zhang YS, Zhang LX. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng. Molecules 2010;15:2319-25. https://doi.org/10.3390/molecules15042319
  28. Kitagawa I, Taniyama T, Hayashi T, Yoshikawa M. Malonyl-ginesnosides Rb1, Rb2, Rc, and Rd, four new malonylated dammarane-type triterpene oligoglycosides from Ginseng Radix. Chem Pharm Bull 1983;31:3353-6. https://doi.org/10.1248/cpb.31.3353
  29. Sun GZ, Li XG, Liu Z, Wang JY, Zheng YN, Yang XW. Isolation and structure characterization of malonyl-notoginsenoside-R4 from the root of Panax ginseng. Chem J Chin Univ 2007;28:1316-8.
  30. Shibata S, Tanaka O, Soma K, Iida Y, Ando T, Nakamura H. Studies on saponins and sapogenins of ginseng: the structure of panaxatriol. Tetrahedron Lett 1965;6:207-13. https://doi.org/10.1016/S0040-4039(01)99595-4
  31. Yoshikawa M, Sugimoto S, Nakamura S, Sakumae H, Matsuda H. Medicinal flowers. XVI. New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem Pharm Bull 2007;55:1034-8. https://doi.org/10.1248/cpb.55.1034
  32. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S. Studies on the saponins of ginseng. II. Structures of ginsenoside-Re, -Rf and -Rg2. Chem Pharm Bull 1974;22:2407-12. https://doi.org/10.1248/cpb.22.2407
  33. Iida Y, Tanaka O, Shibata S. Studies on saponins of ginseng: the structure of ginsenoside-Rg1. Tetrahedron Lett 1968;9:5449-53. https://doi.org/10.1016/S0040-4039(00)89801-9
  34. Zhou JUN, Wu M, Taniyasu S, Besso H, Tanaka O, Saruwatari Y, Fuwa T. Dammarane-saponins of sanchi-ginseng, roots of Panax notoginseng (BURK.) F. H. Chen (Araliaceae) : structures of new saponins, notoginsenosides-R1 and -R2, and identification of ginsenosides-Rg2 and -Rh1. Chem Pharm Bull 1981;29:2844-50. https://doi.org/10.1248/cpb.29.2844
  35. Lin T, Kondo N, Shoji J. Studies on the constituents of panacis japonici rhizoma. V. the structures of chikusetsusaponin I, Ia, Ib, IVa and glycoside $P_1$. Chem Pharm Bull 1976;24:253-61. https://doi.org/10.1248/cpb.24.253
  36. Nakamura S, Sugimoto S, Matsuda H, Yoshikawa M. Structures of dammarane-type triterpene triglycosides from the flower buds of Panax ginseng. Heterocycles 2007;71:577-88. https://doi.org/10.3987/COM-06-10959
  37. Nguyen HT, Song GY, Kim JA, Hyun JH, Kang HK, Kim YH. Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg Med Chem Lett 2010;20:309-14. https://doi.org/10.1016/j.bmcl.2009.10.110
  38. Qiu F, Ma ZZ, Xu SX, Yao XS, Che CT, Chen YJ. A pair of 24-hydroperoxyl epimeric dammarane saponins from flower-buds of Panax ginseng. J Asian Nat Prod Res 2001;3:235-40. https://doi.org/10.1080/10286020108041396
  39. Yoshikawa M, Sugimoto S, Nakamura S, Matsuda H. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chem Pharm Bull 2007;55:571-6. https://doi.org/10.1248/cpb.55.571
  40. Nguyen HT, Song GY, Nhiem NX, Ding Y, Tai BH, Jin LG, Lim CM, Hyun JW, Park CJ, Kang HK, et al. Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J Agric Food Chem 2010;58:868-74. https://doi.org/10.1021/jf903334g
  41. Nguyen HT, Song GY, Minh CV, Kiem PV, Jin LG, Boo HJ, Kang HK, Kim YH. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem Pharm Bull 2010;58:1111-5. https://doi.org/10.1248/cpb.58.1111
  42. Dou DQ, Chen YJ, Liang LH, Pang FG, Shimizu N, Takeda T. Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem Pharm Bull 2001;49:442-6. https://doi.org/10.1248/cpb.49.442
  43. Nguyen HT, Song GY, Kang HK, Kim YH. New dammarane saponins from the steamed ginseng leaves. Bull Korean Chem Soc 2010;31:2094-6. https://doi.org/10.5012/bkcs.2010.31.7.2094
  44. Nguyen HT, Song GY, Park YJ, Kim YH. Two new dammarane-type saponins from the leaves of Panax ginseng. Chem Pharm Bull 2009;57:1412-4. https://doi.org/10.1248/cpb.57.1412
  45. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother Pharmacol 2007;59:589-601. https://doi.org/10.1007/s00280-006-0300-z
  46. Park IH, Han SB, Kim JM, Piao LZ, Kwon SW, Kim NY, Kang TL, Park MK, Park JH. Four new acetylated ginsenosides from processed ginseng (sun ginseng). Arch Pharm Res 2002;25:837-41. https://doi.org/10.1007/BF02977001
  47. Park IH, Kim NY, Han SB, Kim JM, Kwon SW, Kim HJ, Park MK, Park JH. three new dammarane glycosides from heat processed ginseng. Arch Pharm Res 2002;25:428-32. https://doi.org/10.1007/BF02976595
  48. Kim SI, Park JH, Ryu JH, Park JD, Lee YH, Park JH, Kim th, Kim JM, Baek NI. Ginsenoside Rg5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharm Res 1996;19:551-3. https://doi.org/10.1007/BF02986026
  49. Kim DS, Baek NI, Lee YH, Park JD, Kim SI. Preparation and structure determination of a new glycoside, (20E)-ginsenoside Rh3, and its isomer from diol-type ginseng saponins. Yakhak Hoeji 1996;39:86-93.
  50. Ryu JH, Park JH, Kim th, Sohn DH, Kim JM, Park JH. A genuine dammarane glycoside, (20E)-ginsenoside F4 from Korean red ginseng. Arch Pharm Res 1996;19:335-6. https://doi.org/10.1007/BF02976251
  51. Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI. Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med 1996;62:86-7. https://doi.org/10.1055/s-2006-957816
  52. Lee SM, Shon HJ, Choi CS, Hung TM, Min BS, Bae KH. Ginsenosides from heat processed ginseng. Chem Pharm Bull 2009;57:92-4. https://doi.org/10.1248/cpb.57.92
  53. Ryu JH, Park JH, Eun JH, Jung JH, Sohn DH. A dammarane glycoside from Korean red ginseng. Phytochemistry 1997;44:931-3. https://doi.org/10.1016/S0031-9422(96)00661-9
  54. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. (1). Chem Pharm Bull 1963;11:759-61. https://doi.org/10.1248/cpb.11.759
  55. Shibata S, Tanaka O, Nagai M, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XII. Panaxadiol, a sapogenin of ginseng roots. (2). Chem Pharm Bull 1963;11:762-5. https://doi.org/10.1248/cpb.11.762
  56. Wang LB, Wu ZH, Gao HY, Huang J, Sun BH, Wu LJ. A new compound with cytotoxic activities from the leaves of Panax ginseng C.A. Meyer. Chin Chem Lett 2008;19:837-40. https://doi.org/10.1016/j.cclet.2008.05.017
  57. Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem Pharm Bull 2009;57:283-7. https://doi.org/10.1248/cpb.57.283
  58. Kondo N, Marumoto Y, Shoji J. Studies on the constituents of Panacis Japonici Rhizoma. IV. the structure of chikusetsusaponin V. Chem Pharm Bull 1971;19:1103-7. https://doi.org/10.1248/cpb.19.1103
  59. Wu LJ, Wang LB, Gao HY, Wu B, Song XM, Tang ZS. A new compound from the leaves of Panax ginseng. Fitoterapia 2007;78:556-60. https://doi.org/10.1016/j.fitote.2007.06.002
  60. Tao LN, Meng Q, Yin JY, Xing R, Guo HR. A new panaxadiol from the acid hydrolysate of Panax ginseng. Chin Chem Lett 2009;20:687-9. https://doi.org/10.1016/j.cclet.2009.01.015
  61. Lei J, Li X, Gong XJ, Zheng YN. Isolation, synthesis and structures of cytotoxic ginsenoside derivatives. Molecules 2007;12:2140-50. https://doi.org/10.3390/12092140
  62. Ko SR, Suzuki Y, Kim YH, Choi KJ. Enzymatic synthesis of two ginsenoside Re-${\beta}$-xylosides. Biosci Biotechnol Biochem 2001;65:1223-6. https://doi.org/10.1271/bbb.65.1223
  63. Han M, Hou JG, Dong CM, Li W, Yu HL, Zheng YN, Chen L. Isolation, synthesis and structures of ginsenoside derivatives and their anti-tumor bioactivity. Molecules 2010;15:399-406. https://doi.org/10.3390/molecules15010399
  64. Yi B, W.Tian, Qingguo M, Jiangfen Z, Liang W, Qiang L, Fenglan Z, Haijun S. Synthesis and myocardial ischemia protective effect of ocotillol-type derivatives. Rec Nat Prod 2012;6:242-54.
  65. Kumar A, Kumar M, Panwar M, Samarth RM, Park TY, Park MH, Kimura H. Evaluation of chemopreventive action of ginsenoside Rp1. BioFactors 2006;26:29-43. https://doi.org/10.1002/biof.5520260104
  66. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
  67. Wieser ME, Holden N, Coplen TB, Bohlke JK, Berglund M, Brand WA, Bievre PD, Groning M, Loss RD, Meija J, et al. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem 2013;85:1047-78. https://doi.org/10.1351/PAC-REP-13-03-02
  68. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005;338:668-76. https://doi.org/10.1016/j.bbrc.2005.08.072

Cited by

  1. A green protocol for efficient discovery of novel natural compounds: Characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study vol.893, pp.None, 2015, https://doi.org/10.1016/j.aca.2015.08.048
  2. Six week swimming followed by acute uptakes of ginsenoside Rg1 may affect aerobic capacity of SD rats vol.19, pp.4, 2015, https://doi.org/10.5717/jenb.2015.15121106
  3. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis vol.16, pp.6, 2016, https://doi.org/10.1007/s10142-016-0517-9
  4. Antimelanogenesis Activity of Hydrolyzed Ginseng Extract (GINST) via Inhibition of JNK Mitogen‐activated Protein Kinase in B16F10 Cells vol.81, pp.8, 2015, https://doi.org/10.1111/1750-3841.13380
  5. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders vol.2016, pp.None, 2015, https://doi.org/10.1155/2016/2614742
  6. Macropropagation and Production of Clonal Planting Materials of <i>Panax pseudoginseng</i> Wall. vol.6, pp.2, 2015, https://doi.org/10.4236/ojf.2016.62012
  7. Analysis of the relationship between rusty root incidences and soil properties inPanax ginseng vol.41, pp.None, 2015, https://doi.org/10.1088/1755-1315/41/1/012001
  8. General and Genetic Toxicology of Enzyme-Treated Ginseng Extract - Toxicology of Ginseng Rh2+ - vol.19, pp.3, 2016, https://doi.org/10.3831/kpi.2016.19.022
  9. Anti-Fatigue Effects of Enzyme-Modified Ginseng Extract: A Randomized, Double-Blind, Placebo-Controlled Trial vol.22, pp.11, 2015, https://doi.org/10.1089/acm.2016.0057
  10. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products vol.26, pp.5, 2015, https://doi.org/10.1007/s10068-017-0159-2
  11. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies vol.19, pp.9, 2015, https://doi.org/10.1007/s11051-017-3980-x
  12. Emulsifying Properties of Natural Extracts from Panax ginseng L. vol.12, pp.4, 2015, https://doi.org/10.1007/s11483-017-9504-5
  13. Rare triterpene glycoside of ginseng (ginsenoside malonyl-Rg1) detected in plant cell suspension culture of Panax japonicus var. repens vol.64, pp.5, 2015, https://doi.org/10.1134/s102144371705003x
  14. Ginseng on Nuclear Hormone Receptors vol.45, pp.6, 2015, https://doi.org/10.1142/s0192415x17500628
  15. Raphanus sativus Sprout Causes Selective Cytotoxic Effect on p53-Deficient Human Lung Cancer Cells in vitro vol.12, pp.2, 2017, https://doi.org/10.1177/1934578x1701200224
  16. Anti-adipogenic Effects and Mechanisms of Ginsenoside Rg3 in Pre-adipocytes and Obese Mice vol.8, pp.None, 2015, https://doi.org/10.3389/fphar.2017.00113
  17. Ginsenoside Rk1 bioactivity: a systematic review vol.5, pp.None, 2015, https://doi.org/10.7717/peerj.3993
  18. Malonylginsenosides with Potential Antidiabetic Activities from the Flower Buds of Panax ginseng vol.80, pp.4, 2017, https://doi.org/10.1021/acs.jnatprod.6b00789
  19. The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans vol.45, pp.3, 2015, https://doi.org/10.5941/myco.2017.45.3.220
  20. Ginsenoside 20(S)-Rh2 Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells: Role of Orphan Nuclear Receptor Nur77 vol.65, pp.35, 2017, https://doi.org/10.1021/acs.jafc.7b02299
  21. Treatment of the cardiac hypertrophic response and heart failure with ginseng, ginsenosides, and ginseng-related products vol.95, pp.10, 2015, https://doi.org/10.1139/cjpp-2017-0092
  22. Fungal endophytes inhabiting mountain-cultivated ginseng ( Panax ginseng Meyer): Diversity and biocontrol activity against ginseng pathogens vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-16181-z
  23. Major ginsenoside contents in rhizomes of Panax sokpayensis and Panax bipinnatifidus vol.32, pp.2, 2018, https://doi.org/10.1080/14786419.2017.1343322
  24. Anti-Inflammatory Effect of Ginsenoside Rh 2 -Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2018.4180
  25. Shexiang Baoxin Pills as an Adjuvant Treatment for Chronic Heart Failure: A System Review and Meta-Analysis vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/6949348
  26. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells vol.13, pp.None, 2015, https://doi.org/10.2147/ijn.s176176
  27. Effects of Compound Amino Acids and Ginsenosides on Physiological Measures vol.14, pp.1, 2015, https://doi.org/10.3923/ijp.2018.108.115
  28. Cellular stress response mechanisms as therapeutic targets of ginsenosides vol.38, pp.2, 2018, https://doi.org/10.1002/med.21450
  29. Synthesis of Δ20-Ginsenosides Rh4, (20E)-Rh3, Rg6, and Rk1: A General Approach To Access Dehydrated Ginsenosides vol.83, pp.5, 2015, https://doi.org/10.1021/acs.joc.7b02987
  30. Lipids in Ginseng (Panax ginseng) and Their Analysis vol.24, pp.1, 2015, https://doi.org/10.20307/nps.2018.24.1.1
  31. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK vol.10, pp.7, 2015, https://doi.org/10.3390/nu10070830
  32. UPLC-QTOF/MS-Based Metabolomics Applied for the Quality Evaluation of Four Processed Panax ginseng Products vol.23, pp.8, 2015, https://doi.org/10.3390/molecules23082062
  33. Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegans vol.110, pp.None, 2015, https://doi.org/10.1016/j.exger.2018.06.006
  34. ANALYSIS OF GYNZENOSIDES IN THE ROOTS OF PANAX GINSENG INTRODUCED IN THE CENTRAL BOTANICAL GARDEN OF NAS OF BELARUS vol.62, pp.4, 2015, https://doi.org/10.29235/1561-8323-2018-62-4-447-454
  35. 지역별, 연근별 가공백삼의 품질과 지표 성분의 변이 vol.26, pp.5, 2018, https://doi.org/10.7783/kjmcs.2018.26.5.408
  36. Enzymatic Synthesis of Unnatural Ginsenosides Using a Promiscuous UDP-Glucosyltransferase from Bacillus subtilis vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112797
  37. An Integrated LC-MS-Based Strategy for the Quality Assessment and Discrimination of Three Panax Species vol.23, pp.11, 2015, https://doi.org/10.3390/molecules23112988
  38. Suppressive Effects of Ginsenoside Rh1 on HMGB1-Mediated Septic Responses vol.47, pp.1, 2015, https://doi.org/10.1142/s0192415x1950006x
  39. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2015, https://doi.org/10.1080/13543776.2019.1556258
  40. Positive Selection of Squalene Synthase in Cucurbitaceae Plants vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/5913491
  41. Retracted Article: Ginsenoside Rf alleviates dysmenorrhea and inflammation through the BDNF-TrkB-CREB pathway in a rat model of endometriosis vol.10, pp.1, 2015, https://doi.org/10.1039/c8fo01839a
  42. Chloroplast Genome of the Soap Bark Tree Quillaja saponaria vol.7, pp.None, 2015, https://doi.org/10.3389/fevo.2019.00104
  43. Multiple circulating saponins from intravenous ShenMai inhibit OATP1Bs in vitro: potential joint precipitants of drug interactions vol.40, pp.6, 2019, https://doi.org/10.1038/s41401-018-0173-9
  44. Role of Saponins in Plant Defense Against Specialist Herbivores vol.24, pp.11, 2015, https://doi.org/10.3390/molecules24112067
  45. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians vol.36, pp.7, 2015, https://doi.org/10.1177/1049909118822704
  46. Chemical Structures and Pharmacological Profiles of Ginseng Saponins vol.24, pp.13, 2015, https://doi.org/10.3390/molecules24132443
  47. Neuroprotective Effects of Ginseng Phytochemicals: Recent Perspectives vol.24, pp.16, 2015, https://doi.org/10.3390/molecules24162939
  48. Determination of mutagenic sensitivity to gamma rays in ginseng (Panax ginseng) dehiscent seeds, roots, and somatic embryos vol.60, pp.5, 2019, https://doi.org/10.1007/s13580-019-00164-2
  49. Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer vol.19, pp.25, 2015, https://doi.org/10.2174/1568026619666191018100848
  50. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement vol.24, pp.21, 2015, https://doi.org/10.3390/molecules24213947
  51. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor vol.64, pp.None, 2015, https://doi.org/10.1016/j.phymed.2019.152899
  52. Current Status and Problem-Solving Strategies for Ginseng Industry vol.25, pp.12, 2015, https://doi.org/10.1007/s11655-019-3046-2
  53. Ginsenoside Rb1 exerts antiarrhythmic effects by inhibiting I Na and I CaL in rabbit ventricular myocytes vol.9, pp.1, 2015, https://doi.org/10.1038/s41598-019-57010-9
  54. Application of delayed luminescence measurements for the identification of herbal materials: a step toward rapid quality control vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0269-2
  55. 재배년수에 따른 인삼의 생육특성, 생리활성, 성분의 변화 vol.27, pp.6, 2019, https://doi.org/10.7783/kjmcs.2019.27.6.383
  56. Medicinal plants with anti-mutagenic potential vol.34, pp.1, 2020, https://doi.org/10.1080/13102818.2020.1749527
  57. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems vol.27, pp.4, 2020, https://doi.org/10.2174/0929867326666190809221332
  58. Different Age-Induced Changes in Rhizosphere Microbial Composition and Function of Panax ginseng in Transplantation Mode vol.11, pp.None, 2020, https://doi.org/10.3389/fpls.2020.563240
  59. Effects of combined infrared and hot‐air drying on ginsenosides and sensory properties of ginseng root slices ( Panax ginseng Meyer ) vol.44, pp.1, 2015, https://doi.org/10.1111/jfpp.14312
  60. Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation vol.10, pp.1, 2015, https://doi.org/10.3390/agronomy10010068
  61. Natural Product Ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in Cancer Treatment: A Review of the Pharmacological Mechanisms and Pharmacokinetics vol.11, pp.None, 2015, https://doi.org/10.3389/fphar.2020.00521
  62. Inhibition of Herpes Simplex Viruses, Types 1 and 2, by Ginsenoside 20(S)-Rg3 vol.30, pp.1, 2020, https://doi.org/10.4014/jmb.1908.08047
  63. Ten Representative Saponins on Tissue Factor Expression in Human Monocytes: Structure-Activity Relationships and Molecular Docking vol.15, pp.3, 2015, https://doi.org/10.1177/1934578x20913684
  64. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99 T Reveals Insights into Iron Tolerance of Ginseng vol.21, pp.6, 2015, https://doi.org/10.3390/ijms21062019
  65. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2015, https://doi.org/10.3892/mmr.2020.10935
  66. Comprehensive utilization of Ganoderma lucidum residues in papermaking vol.35, pp.1, 2015, https://doi.org/10.1515/npprj-2019-0045
  67. Ginsenoside Rd Ameliorates High Fat Diet‐Induced Obesity by Enhancing Adaptive Thermogenesis in a cAMP‐Dependent Manner vol.28, pp.4, 2015, https://doi.org/10.1002/oby.22761
  68. Efficacy of Panax ginseng Meyer Herbal Preparation HRG80 in Preventing and Mitigating Stress-Induced Failure of Cognitive Functions in Healthy Subjects: A Pilot, Randomized, Double-Blind, Placebo-Co vol.13, pp.4, 2015, https://doi.org/10.3390/ph13040057
  69. Korean Red Ginseng Plays an Anti-Aging Role by Modulating Expression of Aging-Related Genes and Immune Cell Subsets vol.25, pp.7, 2015, https://doi.org/10.3390/molecules25071492
  70. Qualitative and quantitative analysis of saponins in the flower bud of Panax ginseng (Ginseng Flos) by UFLC‐Triple TOF‐MS/MS and UFLC‐QTRAP‐MS/MS vol.31, pp.3, 2015, https://doi.org/10.1002/pca.2894
  71. The “Treatise on the spleen and stomach” ( Pí Wèi Lùn ) as the first record of multiple sclerosis in the medical literature – A hypothesis based on the analys vol.10, pp.3, 2015, https://doi.org/10.1016/j.jtcme.2020.02.009
  72. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice vol.44, pp.3, 2020, https://doi.org/10.1016/j.jgr.2020.01.008
  73. Bioavailability Based on the Gut Microbiota: a New Perspective vol.84, pp.2, 2020, https://doi.org/10.1128/mmbr.00072-19
  74. A short-term, hydroponic-culture of ginseng results in a significant increase in the anti-oxidative activity and bioactive components vol.29, pp.7, 2020, https://doi.org/10.1007/s10068-020-00735-5
  75. Triterpenoids vol.37, pp.7, 2020, https://doi.org/10.1039/c9np00067d
  76. Advances in Saponin Diversity of Panax ginseng vol.25, pp.15, 2015, https://doi.org/10.3390/molecules25153452
  77. Chemical Constituents of the Ginseng Cordyceps Medicinal Fungal Substance (II) vol.56, pp.5, 2015, https://doi.org/10.1007/s10600-020-03199-5
  78. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng vol.12, pp.9, 2015, https://doi.org/10.3390/nu12092590
  79. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  80. Genetic Composition of Korean Ginseng Germplasm by Collection Area and Resource Type vol.10, pp.11, 2015, https://doi.org/10.3390/agronomy10111643
  81. Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway vol.68, pp.51, 2015, https://doi.org/10.1021/acs.jafc.0c06474
  82. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension vol.476, pp.1, 2015, https://doi.org/10.1007/s11010-020-03910-8
  83. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  84. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis vol.11, pp.None, 2015, https://doi.org/10.3389/fphar.2020.570867
  85. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial vol.45, pp.1, 2015, https://doi.org/10.1016/j.jgr.2020.08.003
  86. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  87. Identification of Specific Glycosyltransferases Involved in Flavonol Glucoside Biosynthesis in Ginseng Using Integrative Metabolite Profiles, DIA Proteomics, and Phylogenetic Analysis vol.69, pp.5, 2015, https://doi.org/10.1021/acs.jafc.0c06989
  88. Comparison of the Constituents of Processed Korean and American Ginseng Grown in Korea for Six Years vol.29, pp.1, 2021, https://doi.org/10.7783/kjmcs.2021.29.1.35
  89. Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061733
  90. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action vol.166, pp.None, 2021, https://doi.org/10.1016/j.phrs.2021.105481
  91. Dammarane-type triterpenoid saponins from Salvia russellii Benth. vol.184, pp.None, 2021, https://doi.org/10.1016/j.phytochem.2020.112653
  92. Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent vol.28, pp.2, 2015, https://doi.org/10.11002/kjfp.2021.28.2.261
  93. Phnomibacter ginsenosidimutans gen. nov., sp. nov., a novel glycoside hydrolase positive bacterial strain with ginsenoside hydrolysing activity vol.71, pp.5, 2021, https://doi.org/10.1099/ijsem.0.004793
  94. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review vol.51, pp.4, 2015, https://doi.org/10.1080/10408347.2020.1736506
  95. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease vol.73, pp.3, 2015, https://doi.org/10.1007/s43440-020-00213-z
  96. Inhibitory Effect of pH-Responsive Nanogel Encapsulating Ginsenoside CK against Lung Cancer vol.13, pp.11, 2015, https://doi.org/10.3390/polym13111784
  97. Therapeutic Properties of Edible Mushrooms and Herbal Teas in Gut Microbiota Modulation vol.9, pp.6, 2015, https://doi.org/10.3390/microorganisms9061262
  98. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2015, https://doi.org/10.1021/acs.jafc.1c01231
  99. Pharmacological activities of ginsenoside Rg5 (Review) vol.22, pp.2, 2015, https://doi.org/10.3892/etm.2021.10272
  100. Chemical Variations among Shengmaisan-Based TCM Patent Drugs by Ultra-High Performance Liquid Chromatography Coupled with Hybrid Quadrupole Orbitrap Mass Spectrometry vol.26, pp.13, 2015, https://doi.org/10.3390/molecules26134000
  101. Production of Minor Ginsenosides C-K and C-Y from Naturally Occurring Major Ginsenosides Using Crude β-Glucosidase Preparation from Submerged Culture of Fomitella fraxinea vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164820
  102. Anti-Cancer Effect of Panax Ginseng and Its Metabolites: From Traditional Medicine to Modern Drug Discovery vol.9, pp.8, 2021, https://doi.org/10.3390/pr9081344
  103. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011–2020): Theory, technica vol.1651, pp.None, 2015, https://doi.org/10.1016/j.chroma.2021.462307
  104. Changes in the Growth Characteristics and Compound Contents of 2-Year Old Ginseng according to Chitosan and Ultraviolet Light Treatment vol.29, pp.4, 2021, https://doi.org/10.7783/kjmcs.2021.29.4.253
  105. Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats vol.1, pp.4, 2015, https://doi.org/10.1016/j.phyplu.2021.100051
  106. Hydroponic Cultured Ginseng Leaves Zinc Oxides Nanocomposite Stabilized with CMC Polymer for Degradation of Hazardous Dyes in Wastewater Treatment vol.14, pp.21, 2015, https://doi.org/10.3390/ma14216557
  107. Biotransformation of Ginsenosides (Rb1, Rb2, Rb3, Rc) in Human Intestinal Bacteria and Its Effect on Intestinal Flora vol.18, pp.12, 2015, https://doi.org/10.1002/cbdv.202100296
  108. A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems vol.14, pp.24, 2015, https://doi.org/10.3390/en14248310
  109. Differences in the chemical composition of Panax ginseng roots infected with red rust vol.283, pp.None, 2022, https://doi.org/10.1016/j.jep.2021.114610
  110. Characterization of Saponins from Various Parts of Platycodon grandiflorum Using UPLC-QToF/MS vol.27, pp.1, 2022, https://doi.org/10.3390/molecules27010107