DOI QR코드

DOI QR Code

Antioxidant and Cellular Protective Activities of Ecklonia cava Extracts against Reactive Oxyegen Species

감태(Ecklonia cava) 추출물의 항산화 및 세포보호 활성

  • Yoo, Cha Young (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Kim, Si Yun (Seoul Ban-po high school) ;
  • Park, Jung Won (Seoul Ban-po high school) ;
  • Sung, Soo An (Seoul Ban-po high school) ;
  • Kim, Da Ae (Seoul Ban-po high school) ;
  • Park, Jee Hyun (Seoul Ban-po high school) ;
  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology)
  • 유차영 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 김시윤 (반포고등학교) ;
  • 박정원 (반포고등학교) ;
  • 성수안 (반포고등학교) ;
  • 김다애 (반포고등학교) ;
  • 박지현 (반포고등학교) ;
  • 현송화 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소)
  • Received : 2015.09.04
  • Accepted : 2015.09.17
  • Published : 2015.09.30

Abstract

In this study, we investigated the antioxidative effects of brown seaweed Ecklonia cava extract and its subfractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of E. cava. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fraction ($FSC_{50}=6.98{\mu}g/mL$) and aglycone fraction ($7.03{\mu}g/mL$) are similar to that of (+)-${\alpha}$-tocopherol ($8.98{\mu}g/mL$) which is a reference control. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) of the aglycone fraction ($OSC_{50}=14.48{\mu}g/mL$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was the strongest among all extract and fractions. However, all samples showed lower antioxidant activities than that of L-ascorbic acid ($6.88{\mu}g/mL$) known as a powerful antioxidant. The protective effect of 50% ethanol extract on the $^1O_2$-induced cellular damage of human erythrocytes was dependent on the concentration from 5 to $50{\mu}g/mL$. Both ethyl acetate fraction and aglycone fraction showed strong cellular protective activities at $10{\mu}g/mL$, where the cellular protective effects (${\tau}_{50}$) of each fraction were recorded 442.0 min and 539.9 min, respectively. Three kinds of extract/fractions of E. cava showed much greater cellular protective activities at $10{\mu}g/mL$ than that of liposoluble antioxidant (+)-${\alpha}$-tocopherol (40.6 min) which is a reference control. These results suggest E. cava extracts and its fractions can be applied as an antioxidant ingredient in a field of cosmetics.

본 연구에서는 갈조류인 감태의 추출물과 그 분획들의 항산화 활성을 측정하였다. 모든 실험에서 감태의 50% 에탄올 추출물과 에틸아세테이트 분획, 아글리콘 분획을 사용하였다. DPPH (1,1-diphenyl-2-picrylhydrazyl)법을 이용한 자유 라디칼 소거 활성($FSC_{50}$)에서 에틸아세테이트 분획($FSC_{50}=6.98{\mu}g/mL$)과 아글리콘 분획($7.03{\mu}g/mL$)은 비교물질인 (+)-${\alpha}$-tocopherol($8.98{\mu}g/mL$)과 유사한 활성을 나타냈다. 루미놀 발광법을 이용하여 $Fe^{3+}-EDTA/H_2O_2$계에서 활성산소 소거 활성(총 항산화능, $OSC_{50}$) 결과, 모든 추출물과 분획들 중에서 아글리콘 분획($OSC_{50}=14.48{\mu}g/mL$)이 가장 큰 항산화능을 나타내었으나, 강력한 항산화제인 L-ascorbic acid ($6.88{\mu}g/mL$)보다는 낮았다. $^1O_2$로 유도된 사람 적혈구 세포 손상에 있어서 50% 에탄올 추출물은 $5{\sim}50{\mu}g/mL$에서 농도 의존적인 세포보호 효과를 나타냈다. $10{\mu}g/mL$에서 에틸아세테이트 분획과 아글리콘 분획의 세포보호 효과(${\tau}_{50}$)는 각각 442.0 min 및 539.9 min으로 세포보호 활성이 크게 나타났다. 3종류의 감태 추출물 및 분획은 $10{\mu}g/mL$에서, 비교물질인 지용성 항산화제 (+)-${\alpha}$-tocopherol (40.6 min)보다 훨씬 더 큰 세포보호 활성을 나타냈다. 이러한 결과들은 감태 추출물과 그 분획물들이 항노화 관련 화장품 분야에서 항산화제로서 이용 가능성이 있음을 시사하였다.

Keywords

References

  1. J. Uitto and E. F. Bernstein, Molecular mechanisms of cutaneous aging: Connective tissue alterations in the dermis, J. Invest. Dermatol. Symp. Proc., 3(1), 41 (1998).
  2. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
  3. B. A. Gilchrest, Biochemical and molecular changes in photodamaged skin, ed. B. A. Gilchrest, 168, Photodamage, Blackwell Science, Cambridge (1995).
  4. K. M. Hanson and J. D. Simon, Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin, Proc. Natl. Acad. Sci. U.S.A., 95(18), 10576 (1998). https://doi.org/10.1073/pnas.95.18.10576
  5. F. Urbach, Biological responses to UVA radiation, ed. F. Urbach, 1, Valdemar Publishing Company, Overland Park (1992).
  6. H. Masaki, T. Atsumi, and H. Sakurai, Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation, Biochem. Biophys. Res. Commun., 206(2), 474 (1995). https://doi.org/10.1006/bbrc.1995.1067
  7. B. A. Jurkiewicz and G. R. Buettnerf, EPR detection of free radicals in UV-irradiated skin: Mouse versus human, Photochem. Photobiol., 64(6), 918 (1996). https://doi.org/10.1111/j.1751-1097.1996.tb01856.x
  8. P. Brenneisen, J. Wenk, L. O. Klotz, M. Wlaschek, K. Briviba, T. Krieg, H. Sies, and K. Scharffetter-Kochanek, Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts, J. Biol. Chem., 273, 5279 (1998). https://doi.org/10.1074/jbc.273.9.5279
  9. H. N. Ananthaswamy and W. E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis, Photochem. Photobiol., 52(6), 1119 (1990). https://doi.org/10.1111/j.1751-1097.1990.tb08452.x
  10. R. Ogura, M. Sugiyama, J. Nishi, and N. Haramaki, Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light, J. Invest. Dermatol., 97, 1044 (1991). https://doi.org/10.1111/1523-1747.ep12492553
  11. S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046 (2014). https://doi.org/10.1016/j.jiec.2013.11.041
  12. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680 (2012). https://doi.org/10.1016/j.jiec.2011.11.126
  13. H. S. Rho, C. S. Lee, S. M. Ahn, Y. D. Hong, S. S. Shin, Y. H. Park, and S. N. Park, Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety, Bull. Korean Chem. Soc., 32(12), 4411 (2011). https://doi.org/10.5012/bkcs.2011.32.12.4411
  14. R. E. Moore, Algal nonisoprenoids, marine natural products, chemical and biological perspective, ed. P. J. Scheuer, 1, 44, Academic Press, New York (1978).
  15. S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Oversulfation of fucoidan enhances its anti-angiogenic and anti-tumor activities, Biochem. Pham., 65(2), 173 (2003). https://doi.org/10.1016/S0006-2952(02)01478-8
  16. S. J. Heo, E. J. Park, K. W. Lee, and Y. J. Jeon, Antioxidant activities of enzymatic extracts from brown seaweeds, Bioresour. Technol., 96(14), 1613 (2005). https://doi.org/10.1016/j.biortech.2004.07.013
  17. M. A. Ragan and K. W. Glombitza, Phlorotannins: Brown algal polyphenols, Progress in Phycological Research, 4, 130 (1986).
  18. A. R. Kim, T. S. Shin, M. S. Lee, J. Y. Park, K. E. Park, N. Y. Yoon, J. S. Kim, J. S. Choi, B. C. Jang, D. S. Byun, N. K. Park, and H. R. Kim, Isolation and identification of phlorotannins from Ecklonia stolonifera with anti-oxidant and anti-inflammatory properties, J. Agric. Food Chem., 57(9), 3483 (2009). https://doi.org/10.1021/jf900820x
  19. S. J. Heo, S. C. Ko, S. H. Cha, D. H. Kang, H. S. Park, Y. U. Choi, D. K. Kim, W. K. Jung, and Y. J. Jeon, Effects of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effects against photo-oxidation stress induced by UV-B radiation, Toxicol. In Vitro, 23(6), 1123 (2009). https://doi.org/10.1016/j.tiv.2009.05.013
  20. Q. T. Le, Y. Li, Z. J. Qian, M. M. Kim, and S. K. Kim, Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release, Process Biochem., 44(2), 168 (2008). https://doi.org/10.1016/j.procbio.2008.10.002
  21. M. J. Joe, S. N. Kim, H. Y. Choi, W. S. Shin, G. M. Park, D. W. Kang, and Y. K. Kim, The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts, Biol. Pharm. Bull., 29(8), 1735 (2006). https://doi.org/10.1248/bpb.29.1735