DOI QR코드

DOI QR Code

Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects

목질섭식곤충의 장내 세균 다양성 분석 및 섬유소 분해균 탐색

  • Choi, Min-Young (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kim, Seong-Hyun (Applied Entomology Division, NAAS, RDA) ;
  • Bae, Jin-Woo (Department of Biology, Kyung Hee University) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
  • 최민영 (국립농업과학원 농업미생물과) ;
  • 안재형 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 김성현 (국립농업과학원 곤충산업과) ;
  • 배진우 (경희대학교 생물학과) ;
  • 원항연 (국립농업과학원 농업미생물과)
  • Received : 2015.05.15
  • Accepted : 2015.06.02
  • Published : 2015.09.30

Abstract

In this study, gut bacterial communities in xylophagous insects were analyzed using the pyrosequencing of 16S rRNA genes for their potential biotechnological applications in lignocelluloses degradation. The result showed that operational taxonomic units (OTUs), species richness and diversity index were higher in the hindgut than in the midgut of all insect samples analyzed. The dominant phyla or classes were Firmicutes (54.0%), Bacteroidetes (14.5%), ${\gamma}-Proteobacteria$ (12.3%) in all xylophagous insects except for Rhinotermitidae. The principal coordinates analysis (PCoA) showed that the bacterial community structure mostly clustered according to phylogeny of hosts rather than their habitats. In our study, the two carboxymethyl cellulose (CMC)-degrading isolates which showed the highest enzyme activity were most closely related to Bacillus toyonensis $BCT-7112^T$ and Lactococcus lactis subsp. hordniae $NCDO\;2181^T$, respectively. Cellulolytic enzyme activity analysis showed that ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$ and ${\beta}-1,4-xylanase$ were higher in the hindgut of Cerambycidae. The results demonstrate that xylophagous insect guts harbor diverse gut bacteria, including valuable cellulolytic bacteria, which could be used for various biotechnological applications.

목질 섭식 곤충에 관한 장내 세균 군집의 연구를 이용한 lignocellulose의 분해는 생명 공학적 응용에 있어 큰 잠재력을 갖는다. 본 연구에서 목질 섭식 곤충의 장내 세균 군집은 16S rRNA 유전자를 기반으로 한 파이로시퀀싱 방법을 이용하여 분석되었다. 분석된 모든 곤충에서 중장보다 후장에서 OTU수, 종 풍부도, 다양성 지수가 높았다. 세균 문 또는 강 수준의 다양성을 분석한 결과, 흰개미를 제외한 곤충의 장내 군집에는 Firmicutes, Bacteroidetes, ${\gamma}-Proteobacteria$가 우점하였다. PCoA (principal coordinates analysis)를 이용하여 세균의 군집 구조를 분석한 결과, 서식지보다는 곤충의 과별로 클러스터링 되는 경향이었다. CMC 분해 활성이 가장 높은 두 균주는 Bacillus toyonensis $BCT-7112^T$와 Lactococcus lactis subsp. hordniae $NCDO\;2181^T$과 유연관계가 높았다. 장 적출물의 섬유소 분해활성 실험 결과, 하늘소 후장에서 ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$, ${\beta}-1,4-xylanase$의 효소활성이 가장 높았다. 본 연구에서는 목질 섭식 곤충의 장내에 다양하고 풍부한 세균이 서식하며, 섬유소를 분해하는 세균이 존재한다는 사실을 확인하였고, 이로부터 다양하고 유용한 섬유소 분해균을 분리할 수 있을 것으로 판단되었다.

Keywords

References

  1. Arias-Cordero, E., Ping, L.Y., Reichwald, K., Delb, H., Platzer, M., and Boland, W. 2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 7, e51557. https://doi.org/10.1371/journal.pone.0051557
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168-180. https://doi.org/10.1038/nrmicro3182
  4. Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A.G., Hackstein, J.H.P., van der Drift, C., and den Camp, H. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83, 135-148. https://doi.org/10.1023/A:1023325817663
  5. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101. https://doi.org/10.1186/1471-2180-10-101
  6. Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell. 148, 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
  7. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-D145. https://doi.org/10.1093/nar/gkn879
  8. Colman, D.R., Toolson, E.C., and Takacs-Vesbach, C.D. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124-5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x
  9. Cook, D.M. and Doran-Peterson, J. 2010. Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol. Insect Sci. 17, 303-312. https://doi.org/10.1111/j.1744-7917.2010.01343.x
  10. Despres, L., David, J.P., and Gallet, C. 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307. https://doi.org/10.1016/j.tree.2007.02.010
  11. Dillon, R. and Charnley, K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153, 503-509. https://doi.org/10.1016/S0923-2508(02)01361-X
  12. Dillon, R.J. and Dillon, V.M. 2004. The gut bacteria of insects:Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
  13. Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996-998. https://doi.org/10.1038/nmeth.2604
  14. Eijsink, V.G.H., Vaaje-Kolstad, G., Varum, K.M., and Horn, S.J. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol. 26, 228-235. https://doi.org/10.1016/j.tibtech.2008.02.004
  15. Engel, P. and Moran, N.A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. https://doi.org/10.1111/1574-6976.12025
  16. Eriksson, T., Borjesson, J., and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31, 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
  17. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. 2006. Ethanol can contribute to energy and environmental goals. Science 311, 506-508. https://doi.org/10.1126/science.1121416
  18. Geib, S.M., Jimenez-Gasco, M.D.M., Carlson, J.E., Tie, M., and Hoover, K. 2009. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval asian longhorned beetle. Environ. Entomol. 38, 686-699. https://doi.org/10.1603/022.038.0320
  19. Grieco, M.A., Cavalcante, J.J., Cardoso, A.M., Vieira, R.P., Machado, E.A., Clementino, M.M., Medeiros, M.N., Albano, R.M., Garcia, E.S., de Souza, W., et al. 2013. Microbial community diversity in the gut of the south American termite Cornitermes cumulans (Isoptera: Termitidae). Microb. Ecol. 65, 197-204. https://doi.org/10.1007/s00248-012-0119-6
  20. Gruenwald, S., Pilhofer, M., and Hoell, W. 2010. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst. Appl. Microbiol. 33, 25-34. https://doi.org/10.1016/j.syapm.2009.10.002
  21. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
  22. Hamelinck, C.N., van Hooijdonk, G., and Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 28, 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  23. Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
  24. Huang, X.F., Bakker, M.G., Judd, T.M., Reardon, K.F., and Vivanco, J.M. 2013. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb. Ecol. 65, 531-536. https://doi.org/10.1007/s00248-013-0219-y
  25. Huang, S.W., Zhang, H.Y., Marshall, S., and Jackson, T.A. 2010. The scarab gut: A potential bioreactor for bio-fuel production. Insect Sci. 17, 175-183. https://doi.org/10.1111/j.1744-7917.2010.01320.x
  26. Kaufman, M.G. and Klug, M.J. 1991. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comp. Biochem. Physiol. 98, 117-123. https://doi.org/10.1016/0300-9629(91)90588-4
  27. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e:A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  28. Konig, H., Li, L., and Frohlich, J. 2013. The cellulolytic system of the termite gut. Appl. Microbiol. Biotechnol. 97, 7943-7962. https://doi.org/10.1007/s00253-013-5119-z
  29. Koroiva, R., Souza, C.W.O., Toyama, D., Henrique-Silva, F., and Fonseca-Gessner, A.A. 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genet. Mol. Res. 12, 3421-3434.
  30. Kukor, J.J., Cowan, D.P., and Martin, M.M. 1988. The role of ingested fungal enzymes in cellulose digestion in the larvae of cerambycid beetles. Physiol. Zool. 61, 364-371. https://doi.org/10.1086/physzool.61.4.30161254
  31. Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189, 2477-2486. https://doi.org/10.1128/JB.01899-06
  32. Maki, M., Leung, K.T., and Qin, W.S. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500-516.
  33. Menon, V. and Rao, M. 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522-550. https://doi.org/10.1016/j.pecs.2012.02.002
  34. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  35. Park, D.S., Oh, H.W., Jeong, W.J., Kim, H., Park, H.Y., and Bae, K.S. 2007. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J. Microbiol. 45, 394-401.
  36. Reid, N.M., Addison, S.L., Macdonald, L.J., and Lloyd-Jones, G. 2011. Biodiversity of active and inactive bacteria in the gut flora of wood-feeding huhu beetle larvae (Prionoplus reticularis). Appl. Environ. Microbiol. 77, 7000-7006. https://doi.org/10.1128/AEM.05609-11
  37. Schauer, C., Thompson, C., and Brune, A. 2014. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS ONE 9, e85861. https://doi.org/10.1371/journal.pone.0085861
  38. Schauer, C., Thompson, C.L., and Brune, A. 2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78, 2758-2767. https://doi.org/10.1128/AEM.07788-11
  39. Schloss, P.D., Delalibera, I., Handelsman, J., and Raffa, K.F. 2006. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol. 35, 625-629. https://doi.org/10.1603/0046-225X-35.3.625
  40. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  41. Shi, W., Ding, S.Y., and Yuan, J.S. 2011. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. Bioenerg. Res. 4, 1-10. https://doi.org/10.1007/s12155-010-9096-0
  42. Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101, 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
  43. Sudakaran, S., Salem, H., Kost, C., and Kaltenpoth, M. 2012. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol. Ecol. 21, 6134-6151. https://doi.org/10.1111/mec.12027
  44. Sun, J.Z. and Scharf, M.E. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci. 17, 163-165. https://doi.org/10.1111/j.1744-7917.2010.01348.x
  45. Wang, A.L., Yao, Z.C., Zheng, W.W., and Zhang, H.Y. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 9, e106988. https://doi.org/10.1371/journal.pone.0106988
  46. Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., McHardy, A.C., Djordjevic, G., Aboushadi, N., et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560-565. https://doi.org/10.1038/nature06269
  47. Watanabe, H. and Tokuda, G. 2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55, 609-632. https://doi.org/10.1146/annurev-ento-112408-085319
  48. Xu, J. and Gordon, J.I. 2003. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452-10459. https://doi.org/10.1073/pnas.1734063100
  49. Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.J., Kim, M.S., Park, D.S., Yoon, C., Nam, Y.D., Kim, Y.J., Choi, J.H., et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254-5264. https://doi.org/10.1128/AEM.01226-14

Cited by

  1. Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions vol.108, 2017, https://doi.org/10.1016/j.soilbio.2016.12.005
  2. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera) vol.55, pp.1, 2017, https://doi.org/10.1007/s12275-017-6561-x
  3. Preliminary identification of gut microbes between normal and diseased Dorcus titanus castanicolor (Coleoptera: Lucanidae) vol.39, pp.2, 2015, https://doi.org/10.7852/ijie.2019.39.2.45
  4. Bacterial Communities Associated with the Pine Wilt Disease Insect Vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae Stages vol.11, pp.6, 2015, https://doi.org/10.3390/insects11060376