References
- Arias-Cordero, E., Ping, L.Y., Reichwald, K., Delb, H., Platzer, M., and Boland, W. 2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 7, e51557. https://doi.org/10.1371/journal.pone.0051557
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168-180. https://doi.org/10.1038/nrmicro3182
- Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A.G., Hackstein, J.H.P., van der Drift, C., and den Camp, H. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83, 135-148. https://doi.org/10.1023/A:1023325817663
- Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101. https://doi.org/10.1186/1471-2180-10-101
- Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell. 148, 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
- Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-D145. https://doi.org/10.1093/nar/gkn879
- Colman, D.R., Toolson, E.C., and Takacs-Vesbach, C.D. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124-5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x
- Cook, D.M. and Doran-Peterson, J. 2010. Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol. Insect Sci. 17, 303-312. https://doi.org/10.1111/j.1744-7917.2010.01343.x
- Despres, L., David, J.P., and Gallet, C. 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307. https://doi.org/10.1016/j.tree.2007.02.010
- Dillon, R. and Charnley, K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153, 503-509. https://doi.org/10.1016/S0923-2508(02)01361-X
- Dillon, R.J. and Dillon, V.M. 2004. The gut bacteria of insects:Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. https://doi.org/10.1146/annurev.ento.49.061802.123416
- Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996-998. https://doi.org/10.1038/nmeth.2604
- Eijsink, V.G.H., Vaaje-Kolstad, G., Varum, K.M., and Horn, S.J. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol. 26, 228-235. https://doi.org/10.1016/j.tibtech.2008.02.004
- Engel, P. and Moran, N.A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. https://doi.org/10.1111/1574-6976.12025
- Eriksson, T., Borjesson, J., and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31, 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
- Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. 2006. Ethanol can contribute to energy and environmental goals. Science 311, 506-508. https://doi.org/10.1126/science.1121416
- Geib, S.M., Jimenez-Gasco, M.D.M., Carlson, J.E., Tie, M., and Hoover, K. 2009. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval asian longhorned beetle. Environ. Entomol. 38, 686-699. https://doi.org/10.1603/022.038.0320
- Grieco, M.A., Cavalcante, J.J., Cardoso, A.M., Vieira, R.P., Machado, E.A., Clementino, M.M., Medeiros, M.N., Albano, R.M., Garcia, E.S., de Souza, W., et al. 2013. Microbial community diversity in the gut of the south American termite Cornitermes cumulans (Isoptera: Termitidae). Microb. Ecol. 65, 197-204. https://doi.org/10.1007/s00248-012-0119-6
- Gruenwald, S., Pilhofer, M., and Hoell, W. 2010. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst. Appl. Microbiol. 33, 25-34. https://doi.org/10.1016/j.syapm.2009.10.002
- Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
- Hamelinck, C.N., van Hooijdonk, G., and Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 28, 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
- Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313-321. https://doi.org/10.1098/rspb.2002.2218
- Huang, X.F., Bakker, M.G., Judd, T.M., Reardon, K.F., and Vivanco, J.M. 2013. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb. Ecol. 65, 531-536. https://doi.org/10.1007/s00248-013-0219-y
- Huang, S.W., Zhang, H.Y., Marshall, S., and Jackson, T.A. 2010. The scarab gut: A potential bioreactor for bio-fuel production. Insect Sci. 17, 175-183. https://doi.org/10.1111/j.1744-7917.2010.01320.x
- Kaufman, M.G. and Klug, M.J. 1991. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comp. Biochem. Physiol. 98, 117-123. https://doi.org/10.1016/0300-9629(91)90588-4
- Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e:A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
- Konig, H., Li, L., and Frohlich, J. 2013. The cellulolytic system of the termite gut. Appl. Microbiol. Biotechnol. 97, 7943-7962. https://doi.org/10.1007/s00253-013-5119-z
- Koroiva, R., Souza, C.W.O., Toyama, D., Henrique-Silva, F., and Fonseca-Gessner, A.A. 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genet. Mol. Res. 12, 3421-3434.
- Kukor, J.J., Cowan, D.P., and Martin, M.M. 1988. The role of ingested fungal enzymes in cellulose digestion in the larvae of cerambycid beetles. Physiol. Zool. 61, 364-371. https://doi.org/10.1086/physzool.61.4.30161254
- Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189, 2477-2486. https://doi.org/10.1128/JB.01899-06
- Maki, M., Leung, K.T., and Qin, W.S. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500-516.
- Menon, V. and Rao, M. 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522-550. https://doi.org/10.1016/j.pecs.2012.02.002
- Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
- Park, D.S., Oh, H.W., Jeong, W.J., Kim, H., Park, H.Y., and Bae, K.S. 2007. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J. Microbiol. 45, 394-401.
- Reid, N.M., Addison, S.L., Macdonald, L.J., and Lloyd-Jones, G. 2011. Biodiversity of active and inactive bacteria in the gut flora of wood-feeding huhu beetle larvae (Prionoplus reticularis). Appl. Environ. Microbiol. 77, 7000-7006. https://doi.org/10.1128/AEM.05609-11
- Schauer, C., Thompson, C., and Brune, A. 2014. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS ONE 9, e85861. https://doi.org/10.1371/journal.pone.0085861
- Schauer, C., Thompson, C.L., and Brune, A. 2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78, 2758-2767. https://doi.org/10.1128/AEM.07788-11
- Schloss, P.D., Delalibera, I., Handelsman, J., and Raffa, K.F. 2006. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol. 35, 625-629. https://doi.org/10.1603/0046-225X-35.3.625
- Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Shi, W., Ding, S.Y., and Yuan, J.S. 2011. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. Bioenerg. Res. 4, 1-10. https://doi.org/10.1007/s12155-010-9096-0
- Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101, 1570-1580. https://doi.org/10.1016/j.biortech.2009.11.046
- Sudakaran, S., Salem, H., Kost, C., and Kaltenpoth, M. 2012. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol. Ecol. 21, 6134-6151. https://doi.org/10.1111/mec.12027
- Sun, J.Z. and Scharf, M.E. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci. 17, 163-165. https://doi.org/10.1111/j.1744-7917.2010.01348.x
- Wang, A.L., Yao, Z.C., Zheng, W.W., and Zhang, H.Y. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 9, e106988. https://doi.org/10.1371/journal.pone.0106988
- Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., McHardy, A.C., Djordjevic, G., Aboushadi, N., et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560-565. https://doi.org/10.1038/nature06269
- Watanabe, H. and Tokuda, G. 2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55, 609-632. https://doi.org/10.1146/annurev-ento-112408-085319
- Xu, J. and Gordon, J.I. 2003. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452-10459. https://doi.org/10.1073/pnas.1734063100
- Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.J., Kim, M.S., Park, D.S., Yoon, C., Nam, Y.D., Kim, Y.J., Choi, J.H., et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254-5264. https://doi.org/10.1128/AEM.01226-14
Cited by
- Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions vol.108, 2017, https://doi.org/10.1016/j.soilbio.2016.12.005
- Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera) vol.55, pp.1, 2017, https://doi.org/10.1007/s12275-017-6561-x
- Preliminary identification of gut microbes between normal and diseased Dorcus titanus castanicolor (Coleoptera: Lucanidae) vol.39, pp.2, 2015, https://doi.org/10.7852/ijie.2019.39.2.45
- Bacterial Communities Associated with the Pine Wilt Disease Insect Vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae Stages vol.11, pp.6, 2015, https://doi.org/10.3390/insects11060376