DOI QR코드

DOI QR Code

Temperature dependent 2,3-dihydroxybenzoic acid production in Acinetobacter sp. B-W

Acinetobacter sp. B-W의 온도 의존적 2,3-dihydroxybenzoic acid 생산

  • Kim, Kyoung-Ja (Department of life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Lee, Jae-Hun (Department of life Science and Biotechnology, College of Natural Science, Soonchunhyang University) ;
  • Yang, Yong-Joon (Department of Plant and Food Science, Sangmyung University)
  • 김경자 (순천향대 생명시스템학과) ;
  • 이재훈 (순천향대 생명시스템학과) ;
  • 양용준 (상명대학교 식물식품공학과)
  • Received : 2015.08.06
  • Accepted : 2015.08.26
  • Published : 2015.09.30

Abstract

A soil microorganism producing iron chelator (siderophore) under low iron stress (up to $2{\mu}M$ of iron) was identified as Acinetobacter sp. B-W by 16S rDNA sequence analysis, biochemical-, physiological tests and morphological analysis using electron microscope. Catechol nature of siderophore was detected by Arnow test. Although optimal cell growth was identified at $36^{\circ}C$ in iron-limited media, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$. Iron chelator produced from Acinetobacter sp. B-W was purified from supernatant using butanol extraction, Sephadex LH-20 column chromatography and HPLC. Purified sideropore was identified as 2,3-dihydroxybenzoic acid by HPLC, TLC and IR analysis.

철 스트레스($2{\mu}M$ 이하 농도) 하에서 시데로포어를 생산하는 균주를 토양에서 분리하여 16S rDNA 염기 서열 분석과 생화학적, 생리학적 분석 및 전자 현미경 관찰 등으로 동정한 결과, Acinetobacter sp.로 밝혀졌다. 시데로포어의 카테콜 특성은 Arnow법으로 조사되었다. 철을 제한한 배지에서 균주를 배양한 결과, $36^{\circ}C$에서도 잘 자랐지만 시데로포어 생산은 $28^{\circ}C$에서 높았다. $36^{\circ}C$에서는 시데로포어 생산이 강하게 억제되었다. $10{\mu}M\;FeCl_3$를 첨가한 배지에서는 시데로포어 생산이 완전히 억제되었다. 균주 상등액을 부탄올 추출 후, Sephadex LH-20 컬럼 크로마토그래피와 HPLC를 이용하여 시데로포어를 분리, 정제하였다. 분리, 정제된 시데로포어의 구조는 HPLC, TLC와 IR 분석 결과로부터 2,3-dihydroxybenzoic acid로 확인되었다.

Keywords

References

  1. Arnow, L.E. 1937. Colorimetric determination of the components of 3,4-dihydroxy phenylalanine tyrosine mixtures. J. Biol. Chem. 118, 531-537.
  2. Bergogne-Berenin, E. and Towner, K.J. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9, 148-165.
  3. Budzikiewicz, W. 1993. Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev. 204, 209-228.
  4. Carrillo-Castaneda, G., Elisa, M., and Cano, A. 2000. Characterization of siderophore-mediated iron transport from Rhizobium leguminosarum bv. phaseoli. J. Plant. Nutr. 23, 1669-1683. https://doi.org/10.1080/01904160009382132
  5. Cogswell, R.L. and Weinberg, E.D. 1980. Temperature restriction of iron acquisition in Proteus vulgaris. Microb. Lett. 15, 69-71.
  6. Crosa, J.H. 1984. The relationship of plasmid-mediated iron transport and bacterial virulence. Annu. Rev. Microbiol. 38, 69-89. https://doi.org/10.1146/annurev.mi.38.100184.000441
  7. Crosa, J.H. 1989. Genetics and molecular biology of siderophoremediated iron transport in bacteria. Microbiol. Rev. 53, 517-530.
  8. Csaky, T.Z. 1948. An estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2, 450-454. https://doi.org/10.3891/acta.chem.scand.02-0450
  9. Earhart, C.F. 1996. Uptake and metabolism of iron and molybdenum. In Neidhart, F.C. (ed.) Escherichia coli and Salmonella: cellular mechanisms and molecular biology, pp. 472-482. ASM Press, Washington, USA.
  10. Garibaldi, J.A. 1972. Influence of temperature on the biosynthesis of iron transport compounds by Salmonella typhimurium. J. Bacteriol. 110, 262-265.
  11. Gillam, A.H., Lewis, A.G., and Andersen, R.J. 1981. Quantitative determination of hydroxamic acids. Anal. Chem. 5, 841-844.
  12. Gills, A., Kahn, M.A., Cornelis, P., Mayer, J.M., Mergeay, M., and Lelie, D.V. 1996. Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor. J. Bacteriol. 178, 5499-5507. https://doi.org/10.1128/jb.178.18.5499-5507.1996
  13. Griffiths, G.L., Sigel, S.P., Payne, S.M., and Neilands, J.B. 1984. Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem. 259, 383-385.
  14. Hoefte, M. 1993. Classes of microbial siderophores, pp. 3-26. In Barton, L. (eds.), Iron chelation in plants and soil microorganisms. Academic Press, San Diego, USA.
  15. Ismail, A., Bedell, G.W., and Lupan, D.M. 1985. Effect of temperature on siderophore production by Candida albicans. Biochem. Biophys. Res. Commun. 132, 1160-1165. https://doi.org/10.1016/0006-291X(85)91928-X
  16. Jalal, M., Hossain, D., van der Helm, J., Sanders-Loerh, J., Actis, L.A., and Crosa, J.H. 1989. Structure of anguibactin, a unique plasmid related bacterial siderophore from the fish pathogen Vibrio anguillarum. J. Am. Chem. Soc. 111, 292-296. https://doi.org/10.1021/ja00183a044
  17. Loehr, J. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775 (pJM1). J. Bacteriol. 167, 57-65. https://doi.org/10.1128/jb.167.1.57-65.1986
  18. Meyer, J.M., Neely, A., Stintzi, A., Georges, C., and Holder, I.A. 1996. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 64, 518-523.
  19. Miethke, M. and Marahiel, M.A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413-451. https://doi.org/10.1128/MMBR.00012-07
  20. Milagres, A.M.F., Machuca, A., and Napoleao, D. 1999. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37, 1-6. https://doi.org/10.1016/S0167-7012(99)00028-7
  21. Naidu, A.J. and Yadav, M. 1997. Influence of iron, growth temperature and plasmids on siderophore production in Aeromonas hydrophia. J. Med. Microbiol. 47, 833-838.
  22. Neilands, J.B. 1981. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1, 27-46. https://doi.org/10.1146/annurev.nu.01.070181.000331
  23. Neilands, J.B. 1984. Methodology of siderophores. Struct. Bonding 58, 1-24. https://doi.org/10.1007/BFb0111309
  24. Neilands, J.B. 1995. Siderophores: structure and function of microbial Iron transport compounds. J. Biol. Chem. 270, 26723-26726. https://doi.org/10.1074/jbc.270.45.26723
  25. O'Brien, I.G., Cox, G.B., and Gibson, F. 1970. Biologically active compounds containing 2,3-dihydroxybenzoic acid and serine formed by Escherichia coli. Biochim. Biophys. Acta. 20, 453-460.
  26. O'Brien, I.G. and Gibson, F. 1970. The structure of enterochelin and related 2,3-dihydroxy-N-benzoyl serine conjugates from Escherichia coli. Biochim. Biophys. Acta. 215, 393-402. https://doi.org/10.1016/0304-4165(70)90038-3
  27. Payne, S.M. 1994. Detection, isolation and characterization of siderophores. Methods Enzymol. 235, 329-344. https://doi.org/10.1016/0076-6879(94)35151-1
  28. Peleg, A.Y., Seifert, H., and Paterson, D.L. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538-582. https://doi.org/10.1128/CMR.00058-07
  29. Perez, F., Hujer, A.M., Hujer, K.M., Decker, B.K., Rather, P.N., and Bonomo, R.A. 2007. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 3471-3484. https://doi.org/10.1128/AAC.01464-06
  30. Raymond, K. and Dertz, E.M. 2004. Biochemical and physical properties of siderophores, pp. 1-16. In Crosa, J.M., Mey, A.M., and Pyne, S.M. (eds.), Iron Transport in Bacteria. ASM Press, Washington, D.C., USA.
  31. Rogers, H.J. 1973. Iron-binding catechols and virulence in Escherichia coli. Infect. Immun. 7, 445-456.
  32. Schwyn, R. and Neiland, J.B. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  33. Skaar, E.P. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6, e1000949. https://doi.org/10.1371/journal.ppat.1000949
  34. Stintzi, A. and Mayer, J.M. 1994. Search for siderophores in microorganisms. In Manja, K.R. (ed.), Microbes for Better Living, MICON 94 and 35th AMI Conference, CFTRI, Mysore, India.
  35. Walsh, C.T., Liu, J., Rusnak, F., and Sakaitani, M. 1990. Molecular studies on enzymes in chorismate metabolism and enterobactin biosynthetic pathway. Chem. Rev. 90, 1105-1129. https://doi.org/10.1021/cr00105a003
  36. Wencewicz, T., Möllmann, U., Long, T., and Miller, M. 2009. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse" antibiotics and synthetic desferridanoxamine antibiotic conjugates. Biometals 22, 633-648. https://doi.org/10.1007/s10534-009-9218-3
  37. Winkelmann, G. 2004. Ecology of siderophores, pp. 437-450. In Crosa, J.H., Mey, A.R., and Payne, S.M. (eds.), Iron Transport in Bacteria. ASM Press, Washington, D.C., USA.
  38. Worsham, P.L. and Konisky, J. 1984. Effect of growth temperature on the acquisition of iron by Salmonella typhimurium. J. Bacteriol. 158, 163-168.

Cited by

  1. Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W vol.52, pp.3, 2016, https://doi.org/10.7845/kjm.2016.6043
  2. Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W vol.53, pp.2, 2015, https://doi.org/10.7845/kjm.2017.7023
  3. Effect of plasmid curing on the production of siderophore from glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W vol.54, pp.3, 2015, https://doi.org/10.7845/kjm.2018.8026