References
- Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
- Fleuri, L.F., Kawaguti, H.Y., and Sato, H.H. 2009. Production, purification and application of extracellular chitinase from Cellulosimicrobium cellulans 191. Braz. J. Microbiol. 40, 623-630. https://doi.org/10.1590/S1517-83822009000300026
-
Huang, J.L., Bao, L.X., Zou, H.Y., Che, S.G., and Wang, G.X. 2012. High-level production of a cold-active
${\beta}$ -mannanase from Bacillus subtilis BS5 and its molecular cloning and expression. Mol. Gen. Mikrobiol. Virusol. 4, 14-17. -
Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable
${\beta}$ -mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96. - Kansoh, A.L. and Nagieb, Z.A. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek 85, 103-114. https://doi.org/10.1023/B:ANTO.0000020281.73208.62
- Kataoka, N. and Tokiwa, Y. 1998. Isolation and characterization of an active mannanase-producing anaerobic bacerium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 84, 357-367. https://doi.org/10.1046/j.1365-2672.1998.00349.x
-
Kim, D.Y., Ham, S.J., Lee, H.J., Cho, H.Y., Kim, J.H., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011a. Cloning and characterization of a modular GH5
${\beta}$ -1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102, 9185-9192. https://doi.org/10.1016/j.biortech.2011.06.073 -
Kim, D.Y., Ham, S.J., Lee, H.J., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011b. A highly active endo-
${\beta}$ -1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb. Technol. 48, 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013 -
Kim, D.Y., Han, M.K., Lee, J.S., Oh, H.W., Park, D.S., Shin, D.H., Bae, K.S., Son, K.H., and Park, H.Y. 2009. Isolation and characterization of a cellulase-free endo-
${\beta}$ -1,4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Proc. Biochem. 44, 1055-1059. https://doi.org/10.1016/j.procbio.2009.05.005 - Kweun, M.A., Lee, M.S., Choi, J.H., Cho, K.H., and Yoon, K.H. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
-
Lu, H., Zhang, H., Shi, P., Luo, H., Wang, Y., Yang, P., and Yao, B. 2013. A family 5
${\beta}$ -mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl. Microbiol. Biotechnol. 97, 8121-8128. https://doi.org/10.1007/s00253-012-4656-1 -
Mok, C.H., Lee, J.H., and Kim, B.G. 2013. Effects of exogenous phytase and
${\beta}$ -mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Anim. Feed Sci. Technol. 186, 209-213. https://doi.org/10.1016/j.anifeedsci.2013.10.008 - Nabti, E., Bensidhoum, L., Tabli, N., Dahel, D., Weiss, A., Rothballer, M., Schmid, M., and Hartmann, A. 2014. Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. Eur. J. Soil Biol. 61, 20-26. https://doi.org/10.1016/j.ejsobi.2013.12.008
- Oh, H.W., Heo, S.Y., Kim, D.Y., Park, D.S., Bae, K.S., and Park, H.Y. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek 93, 437-442. https://doi.org/10.1007/s10482-007-9210-2
- Shi, P., Yuan, T., Zhao, J., Huang, H., Luo, H., Meng, K., Wang, Y., and Yao, B. 2010. Genetic and biochemical characterization of a protease-resistant mesophilic bmannanase from Streptomyces sp. S27. J. Ind. Microbiol. Biotechnol. 38, 451-458.
- Song, J.M. and Wei, D.Z. 2010. Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9. Biomass Bioenerg. 34, 1930-1934. https://doi.org/10.1016/j.biombioe.2010.08.010
- Srivastava, P.K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 392-417. https://doi.org/10.1080/10826068.2013.833108
-
Tanabe, Y. and Oda, M. 2011. Molecular characterization of endo-1,3-
${\beta}$ -glucanase from Cellulosimicrobium cellulans: Effects of carbohydrate-binding module on enzymatic function and stability. Biochim. Biophy. Acta 1814, 1713-1719. https://doi.org/10.1016/j.bbapap.2011.09.004 - Vijayalaxmi, S., Prakash, P., Jayalakshmi, S.K., Mulimani, V.H., and Sreeramulu, K. 2013. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl. Biochem. Biotechnol. 171, 382-395. https://doi.org/10.1007/s12010-013-0333-9
- Yoon, K.H. 2011. Production and properties of hemicellulases by a Cellulosimicrobium sp. isolate. Kor. J. Microbiol. Biotechnol. 39, 252-258.
- Yoon, K.H. and Lim, B.L. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694.
-
You, J., Liu, J.F., Yang, S.Z., and Mu, B.Z. 2015. Low-temperatureactive and salt-tolerant
${\beta}$ -mannanase from a newly isolated Enterobacter sp. strain N18. J. Biosci. Bioeng. http://dx.doi.org/10.1016/j.jbiosc.2015.06.001 (Article in press). - Yuan, Y., Hu, Y., Hu, C., Leng, J., Chen, H., Zhao, X., Gao, J., and Zhou, Y. 2015. Overexpression and characterization of a glycoside hydrolase family 1 enzyme from Cellulosimicrobium cellulans sp. 21 and its application for minor ginsenosides production. J. Mol. Cataly. B: Enzym. 120, 60-67. https://doi.org/10.1016/j.molcatb.2015.06.015
- Zhang, C., Chen, J.D., and Yang, F.Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175-181. https://doi.org/10.1016/j.carbpol.2013.12.081
- Zhang, Y., Ju, J., Peng, H., Gao, F., Zhou, C., Zeng, Y., Xue, Y., Li, Y., Henrissat, B., Gao, G.F., et al. 2008. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J. Biol. Chem. 283, 31551-31558. https://doi.org/10.1074/jbc.M803409200
-
Zhou, J., Zhang, R., Gao, Y., Li, J., Tang, X., Mu, Y., Wang, F., Li, C., Dong, Y., and Huang, Z. 2012. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-
${\beta}$ -mannanase from a new Sphingomonas strain. J. Biosci. Bioeng. 113, 568-574. https://doi.org/10.1016/j.jbiosc.2011.12.011
Cited by
- Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 vol.52, pp.3, 2016, https://doi.org/10.7845/kjm.2016.6045
- 두 종류 Bacillus속 균주의 Xylanases 특성 비교 vol.44, pp.3, 2015, https://doi.org/10.4014/mbl.1608.08002
- Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성 vol.54, pp.2, 2015, https://doi.org/10.7845/kjm.2018.8019