DOI QR코드

DOI QR Code

Effects of ion irradiation on microstructure and properties of zirconium alloys-A review

  • Yan, Chunguang (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Wang, Rongshan (Life Management Technology Center, Suzhou Nuclear Power Research Institute) ;
  • Wang, Yanli (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Wang, Xitao (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Bai, Guanghai (Life Management Technology Center, Suzhou Nuclear Power Research Institute)
  • Received : 2014.07.18
  • Accepted : 2014.12.10
  • Published : 2015.04.25

Abstract

Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.

Keywords

References

  1. J.H. Kim, M.H. Lee, B.K. Choi, Y.H. Jeong, Failure behavior of Zircaloy-4 cladding after oxidation and water quench, J. Nucl. Mater. 362 (2007) 36-45. https://doi.org/10.1016/j.jnucmat.2006.10.026
  2. S.I. Choi, J.H. Kim, Radiation-induced dislocation and growth behavior of zirconium and zirconium alloys - a review, Nucl. Eng. Technol. 45 (2013) 385-392. https://doi.org/10.5516/NET.07.2013.035
  3. M.J. Fluss, P. Hosemann, J. Marian, Charged-particle Irradiation for Neutron Radiation Damage Studies, Characterization of Materials, John Wiley & Sons, Inc., Hoboken, NY, 2002.
  4. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, Verlag Berlin Heidelberg, 2007.
  5. G.S. Was, Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems, J. Nucl. Mater. 367 (2007) 11-20.
  6. R. Adamson, F. Garzarolli, C. Patterson, In-reactor Creep of Zirconium Alloys, Advance Nuclear Technology International, Sweden, 2009.
  7. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission, Science 327 (2010) 1631-1634. https://doi.org/10.1126/science.1183723
  8. H. Wiedersich, P. Okamoto, N.Q. Lam, A theory of radiationinduced segregation in concentrated alloys, J. Nucl. Mater. 83 (1979) 98-108. https://doi.org/10.1016/0022-3115(79)90596-8
  9. Y. Etoh, S. Shimada, Irradiation-induced dissolution of precipitates in Zircaloy-2, J. Nucl. Sci. Technol. 29 (1992) 358-366. https://doi.org/10.1080/18811248.1992.9731535
  10. M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater. 159 (1988) 190-218. https://doi.org/10.1016/0022-3115(88)90093-1
  11. M. Griffiths, J.F. Mecke, J.E. Winegar, Evolution of microstructure in zirconium alloys during irradiation, Zirconium in the Nuclear Industry: Eleventh International Symposium, STP1295 (1996) 580-602.
  12. M. Griffiths, R.W. Gilbert, V. Fidleris, R.P. Tucker, R.B. Adamson, Neutron damage in zirconium alloys irradiated at 644 to 710 K, J. Nucl. Mater. 150 (1987) 159-168. https://doi.org/10.1016/0022-3115(87)90071-7
  13. Y. de Carlan, D. Gilbon, M. Griffiths, D. Gibon, C. Lemaignan, Influence of iron in the nucleation of component dislocation loops in irradiated zircaloy-4, Zirconium in the Nuclear Industry: Eleventh International Symposium, STP1295 (1996) 638-653.
  14. R. Holt, A. Causey, M. Griffiths, E. HO, High-fluence irradiation growth of cold-worked Zr-2.5Nb, Zirconium in the Nuclear Industry: Twelfth International Symposium, STP1354 (2000) 86-104.
  15. G.P. Sabol, G.R. Kilp, M.G. Balfour, E. Roberts, Development of a cladding alloy for high burnup, Zirconium in the Nuclear Industry: Eighth International Symposium, STP1023 (1989) 227-244.
  16. V.N. Shishov, M.M. Peregud, A.V. Nikulina, V.F. Kon'kov, V.V. Novikov, V.A. Markelov, T.N. Khokhunova, G.P. Kobylyansky, A.E. Novoselov, Z.E. Ostrovsky, A.V. Obukhov, Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys, Zirconium in the Nuclear Industry: 15th International Symposium, STP1505 (2008) 724-743.
  17. J.P. Mardon, D. Charquet, J. Senevat, M. Griffiths, B.D. Warr, A. Stasser, J.R. Theaker, H. Rosenbaum, B. Cheng, Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy, Zirconium in the Nuclear Industry: Twelfth International Symposium. STP1354 (2000) 505-524.
  18. Y.H. Jeong, S.Y. Park, M.H. Lee, B.K. Choi, J.H. Beak, J.Y. Park, J.H. Kim, H.G. Kim, Out-of-pile and in-pile performance of advanced zirconium alloys (HANA) for high burn-up fuel, J. Nucl. Sci. Technol. 43 (2006) 977-983. https://doi.org/10.1080/18811248.2006.9711185
  19. A.T. Motta, F. Lefebvre, C. Lemaignan, Amorphization of precipitates in Zircaloy under neutron and chargedparticle irradiation, Zirconium in the Nuclear Industry: Ninth International Symposium. STP1132 (1991) 718-739.
  20. M. Griffiths, R.W. Gilbert, G.J.C. Carpenter, Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and-4 during neutron irradiation, J. Nucl. Mater. 150 (1987) 53-66. https://doi.org/10.1016/0022-3115(87)90093-6
  21. Y. Etoh, S. Shimada, Neutron irradiation effects on intermetallic precipitates in Zircaloy as a function of fluence, J. Nucl. Mater. 200 (1993) 59-69. https://doi.org/10.1016/0022-3115(93)90009-N
  22. Y. Etoh, Microstructure and corrosion resistance of irradiated fuel cladding tubes, J. Nucl. Sci. Technol. 29 (1992) 589-597. https://doi.org/10.1080/18811248.1992.9731569
  23. H.R. Higgy, F.H. Hammad, Effect of neutron irradiation on the tensile properties of zircaloy-2 and zircaloy-4, J. Nucl. Mater. 44 (1972) 215-227. https://doi.org/10.1016/0022-3115(72)90099-2
  24. T. Onchi, H. Kayano, Y. Higashiguchi, Effect of neutron irradiation on deformation behavior of zirconium, J. Nucl. Sci. Technol. 14 (1997) 359-369.
  25. D.O. Northwood, R.A. Herring, Irradiation growth of zirconium alloy nuclear reactor structural components, J. Mater. Energy Syst. 4 (1983) 195-216. https://doi.org/10.1007/BF02833441
  26. V. Shishov, M. Peregud, A. Nikulina, P. Shebaldov, A. Tselischev, A. Novoselov, G. Kobylyansky, Z. Ostrovsky, V. Shamardin, Influence of zirconium alloy chemical composition on microstructure formation and irradiation induced growth, Zirconium in the Nuclear Industry: Thirteenth International Symposium, STP1423 (2002) 758-779.
  27. M. Nakatsuka, M. Nagai, Reduction of plastic anisotropy of zircaloy cladding by neutron irradiation (II), J. Nucl. Sci. Technol. 24 (1987) 906-914. https://doi.org/10.1080/18811248.1987.9733520
  28. M. Nakatsuka, M. Nagai, Reduction of plastic anisotropy of zircaloy cladding by neutron irradiation (I), J. Nucl. Sci. Technol. 24 (1987) 832-838. https://doi.org/10.1080/18811248.1987.9735886
  29. D. Lee, E.F. Koch, Irradiation damage in Zircaloy-2 produced by high-dose ion bombardment, J. Nucl. Mater. 50 (1974) 162-174. https://doi.org/10.1016/0022-3115(74)90153-6
  30. F. Onimus, J.L. Bꠑechade, Radiation Effects in Zirconium Alloys, Comprehensive Nuclear Mater, Elsevier, Oxford, 2012.
  31. C. Hellio, C.H. de Novion, L. Boulanger, Influence of alloying elements on the dislocation loops created by $Zr^+$ ion or by electron irradiation in a-zirconium, J. Nucl. Mater. 159 (1988) 368-378. https://doi.org/10.1016/0022-3115(88)90103-1
  32. R.M. Hengstler-Eger, P. Baldo, L. Beck, J. Dorner, K. Ertl, P.B. Hoffmann, C. Hugenschmidt, M.A. Kirk, W. Petry, P. Pikart, A. Rempel, Heavy ion irradiation induced dislocation loops in AREVA's $M5^{(R)}$ alloy, J. Nucl. Mater. 423 (2012) 170-182. https://doi.org/10.1016/j.jnucmat.2012.01.002
  33. Y. Idrees, Z. Yao, M.A. Kirk, M.R. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013) 95-107. https://doi.org/10.1016/j.jnucmat.2012.09.014
  34. M. Griffiths, R.W. Gilbert, The formation of c-component defects in zirconium alloys during neutron irradiation, J. Nucl. Mater. 150 (1987) 169-181. https://doi.org/10.1016/0022-3115(87)90072-9
  35. H. Zou, G.M. Hood, J.A. Roy, R.H. Packwood, Irradiation effects on Fe distributions in Zircaloy-2 and Zr-2.5Nb, MRS Proc. 373 (1994) 201-206. https://doi.org/10.1557/PROC-373-201
  36. H. Zou, G.M. Hood, J.A. Roy, R.H. Packwood, Irradiationdriven solute redistribution in Zr alloys, J. Nucl. Mater. 245 (1997) 248-252. https://doi.org/10.1016/S0022-3115(96)00711-8
  37. P.R. Okamoto, L.E. Rehn, Radiation-induced segregation in binary and ternary alloys, J. Nucl. Mater. 83 (1997) 2-23.
  38. A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. 41 (2000) 1372-1378. https://doi.org/10.2320/matertrans1989.41.1372
  39. Y. Idrees, Z. Yao, M. Sattari, M.A. Kirk, M.R. Daymond, "Irradiation induced microstructural changes in Zr-Excel alloy, J. Nucl. Mater. 441 (2013) 138-151. https://doi.org/10.1016/j.jnucmat.2013.05.036
  40. S. Yamada, T. Kameyama, Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation, J. Nucl. Mater. 422 (2012) 167-172. https://doi.org/10.1016/j.jnucmat.2011.12.035
  41. L. Tournadre, F. Onimus, J.L. Bꠑechade, D. Gilbon, J.M. Clouꠑe, J.P. Mardon, X. Feaugas, O. Toader, C. Bachelet, Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy- 4, J. Nucl. Mater. 425 (2012) 76-82. https://doi.org/10.1016/j.jnucmat.2011.11.061
  42. J.J. Kai, W.I. Huang, H.Y. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, J. Nucl. Mater. 170 (1990) 193-209. https://doi.org/10.1016/0022-3115(90)90412-G
  43. F. Lefebvre, C. Lemaignan, Heavy ion-induced amorphlsation of $Zr(Fe,Cr)_2$ precipitates in Zircaloy-4, J. Nucl. Mater. 165 (1989) 122-127. https://doi.org/10.1016/0022-3115(89)90240-7
  44. A.T. Motta, D.R. Olander, Irradiation-induced Changes in Zircaloy Intermetallics, Electric Power Research Inst., Palo Alto, 1990.
  45. F. Lefebvre, C. Lemaignan, Analysis with heavy ions of the amorphisation under irradiation of $Zr(Fe,Cr)_2$ precipitates in zircaloy-4, J. Nucl. Mater. 171 (1990) 223-229. https://doi.org/10.1016/0022-3115(90)90369-X
  46. X.T. Zu, K. Sun, M. Atzmon, L.M. Wang, L.P. You, F.R. Wan, J.T. Busby, G.S. Was, R.B. Adamson, Effect of proton and Ne irradiation on the microstructure of Zircaloy 4, Philos. Mag. 85 (2005) 649-659. https://doi.org/10.1080/14786430412331320017
  47. H.H. Shen, S.M. Peng, X. Xiang, F.N. Naab, K. Sun, X.T. Zu, Proton irradiation effects on the precipitate in a Zr-1.6Sn- 0.6Nb-0.2Fe-0.1Cr alloy, J. Nucl. Mater. 452 (2014) 335-342. https://doi.org/10.1016/j.jnucmat.2014.05.042
  48. H.H. Shen, J.M. Zhang, S.M. Peng, X. Xiang, K. Sun, X.T. Zu, In situ TEM investigation of amorphization and recrystallization of $Zr(Fe,Cr,Nb)_2$ precipitates under Ne ion irradiation, Vacuum 110 (2014) 24-29. https://doi.org/10.1016/j.vacuum.2014.08.002
  49. M.L. Swanson, J.R. Parsons, C.W. Hoelke, Damaged regions in neutron-irradiated and ion-bombarded Ge and Si, Radiat. Eff. 9 (1971) 249-256. https://doi.org/10.1080/00337577108231056
  50. L.M. Howe, D. Phillips, H. Zou, J. Forster, R. Siegele, J.A. Davies, A.T. Motta, J.A. Faldowski, P.R. Okamoto, Application of ion-beam-analysis techniques to the study of irradiation damage in zirconium alloys, Nucl. Instrum. Methods Phys. Res. Sec. B 118 (1996) 663-669. https://doi.org/10.1016/0168-583X(96)80117-0
  51. T. Diaz de La Rubia, M. Guinan, New mechanism of defect production in metals: a molecular-dynamics study of interstitial-dislocation-loop formation in high-energy displacement cascades, Phys. Rev. Lett. 66 (1991) 2766-2769. https://doi.org/10.1103/PhysRevLett.66.2766
  52. S.X. Wang, L.M. Wang, R.C. Ewing, Irradiation-induced amorphization: effects of temperature, ion mass, cascade size, and dose rate, Phys. Rev. B 63 (2000) 024105. https://doi.org/10.1103/PhysRevB.63.024105
  53. H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids, Radiat. Eff. 25 (1975) 1-12. https://doi.org/10.1080/00337577508242047
  54. J.L. Brimhall, H.E. Kissinger, L.A. Charlot, Amorphous phase formation in irradiated intermetallic compounds, Radiat. Eff. 77 (1983) 273-293. https://doi.org/10.1080/00337578308228192
  55. S.X. Wang, L.M. Wang, R.C. Ewing, R.H. Doremus, Ion beaminduced amorphization in MgO-$Al_2O_3$-$SiO_2$. I. experimental and theoretical basis, J. Non-Cryst. Solids 238 (1998) 198-213. https://doi.org/10.1016/S0022-3093(98)00694-2
  56. S.X. Wang, L.M. Wang, R.C. Ewing, R.H. Doremus, Ion beaminduced amorphization in MgO-$Al_2O_3$-$SiO_2$. II. empirical model, J. Non-Cryst. Solids 238 (1998) 214-224. https://doi.org/10.1016/S0022-3093(98)00695-4
  57. R. Young, D. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr. 15 (1982) 430-438. https://doi.org/10.1107/S002188988201231X
  58. P. Mukherjee, P.M.G. Nambissan, P. Barat, P. Sen, S.K. Bandyopadhyay, J.K. Chakravartty, S.L. Wadekar, S. Banerjee, S.K. Chattopadhyay, S.K. Chatterjee, M.K. Mitra, The study of microstructural defects and mechanical properties in proton-irradiated Zr-1.0%Nb-1.0%Sn-0.1%Fe, J. Nucl. Mater. 297 (2001) 341-344. https://doi.org/10.1016/S0022-3115(01)00630-4
  59. P. Mukherjee, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chottopadhyay, S.K. Chatterjee, M.K. Mitra, Characterisation of microstructural parameters in oxygenirradiated Zr-1.0% Nb-1.0% Sn-0.1% Fe, J. Nucl. Mater. 305 (2002) 169-174. https://doi.org/10.1016/S0022-3115(02)00933-9
  60. P. Mukherjee, A. Sarkar, P. Barat, Microstructural changes in oxygen-irradiated zirconium-based alloy characterised by Xray diffraction techniques, Mater. Charact. 55 (2005) 412-417. https://doi.org/10.1016/j.matchar.2005.09.002
  61. A. Sarkar, P. Mukherjee, P. Barat, Effect of heavy ion irradiation on microstructure of zirconium alloy characterised by X-ray diffraction, J. Nucl. Mater. 372 (2008) 285-292. https://doi.org/10.1016/j.jnucmat.2007.03.217
  62. P.S. Chowdhury, P. Mukherjee, N. Gayathri, M. Bhattacharya, A. Chatterjee, P. Barat, P.M.G. Nambissan, Post irradiated microstructural characterization of Zr-1Nb alloy by X-ray diffraction technique and positron annihilation spectroscopy, Bull. Mater. Sci. 34 (2011) 507-513. https://doi.org/10.1007/s12034-011-0120-6
  63. C. Zhou, X. Liu, C. Ma, B. Wang, Z. Zhang, L. Wei, Positron beam studies of argon-irradiated polycrystal ${\alpha}$-Zr, J. Appl. Phys. 97 (2005) 063511. https://doi.org/10.1063/1.1833573
  64. L. Pagano Jr., A.T. Motta, R.C. Birtcher, The formation of bubbles in Zr alloys under Kr ion irradiation, J. Nucl. Mater. 244 (1997) 295-304. https://doi.org/10.1016/S0022-3115(96)00757-X
  65. G. Ran, J.K. Xu, Q. Shen, J. Zhang, N. Li, L.M. Wang, In situ TEM observation of growth behavior of Kr bubbles in zirconium alloy during post-implantation annealing, Nucl. Instrum. Methods Phys. Res. Sect. B 307 (2013) 516-521. https://doi.org/10.1016/j.nimb.2012.11.085
  66. B.O. Hall, Surface hardening in ion-implanted metals, J. Nucl. Mater. 116 (1983) 123-126. https://doi.org/10.1016/0022-3115(83)90300-8
  67. P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y.Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, L. Edwards, Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys, J. Nucl. Mater. 438 (2013) 108-115. https://doi.org/10.1016/j.jnucmat.2013.02.078
  68. B. Bose, R.J. Klassen, Effect of ion irradiation and indentation depth on the kinetics of deformation during microindentation of Zr-2.5%Nb pressure tube material at $25^{\circ}C$, J. Nucl. Mater. 399 (2010) 32-37. https://doi.org/10.1016/j.jnucmat.2009.12.019
  69. D.O. Northwood, R.A. Herring, Neon ion simulation of neutron induced irradiation growth in zirconium alloys, J. Mater. Eng. 9 (1988) 329-335. https://doi.org/10.1007/BF02834043
  70. J.R. Parsons, C.W. Hoelke, R.W. Gilbert, Ion simulation of neutron irradiation growth in annealed polycrystalline Zr, J. Nucl. Mater. 96 (1981) 169-177. https://doi.org/10.1016/0022-3115(81)90230-0
  71. J.R. Parsons, C.W. Hoelke, Ion simulation of neutron irradiation growth and creep in Zr and Zr-2.5 wt% Nb at 314 K, J. Nucl. Mater. 114 (1983) 103-107. https://doi.org/10.1016/0022-3115(83)90078-8
  72. X.D. Bai, S.G. Wang, J. Xu, J. Bao, H.M. Chen, Y.D. Fan, Effect of self-ion bombardment damage on high temperature oxidation behavior of Zircaloy-4, J. Nucl. Mater. 254 (1998) 266-270. https://doi.org/10.1016/S0022-3115(97)00346-2
  73. J. Xu, X.D. Bai, J. An, Y.D. Fan, Effect of Ar ion irradiation on electrochemical behaviors of zircaloy-4, Appl. Radiat. Isot. 53 (2000) 1005-1010. https://doi.org/10.1016/S0969-8043(99)00253-5
  74. J. Xu, X.D. Bai, J. An, Y.D. Fan, Comparison of electrochemical behaviors of zircaloy-4 irradiated by Ar and Zr ions, J. Mater. Sci. Lett. 19 (2000) 943-945. https://doi.org/10.1023/A:1006755919221
  75. D.Q. Peng, X.D. Bai, X.W. Chen, Q.G. Zhou, X.Y. Liu, R.H. Yu, Effect of self-ion bombardment on the corrosion behavior of zirconium, Nucl. Instrum. Methods Phys. Res. Sect. B 215 (2004) 394-402. https://doi.org/10.1016/j.nimb.2003.09.016

Cited by

  1. Influence of Ar-irradiation on structural and nanomechanical properties of pure zirconium measured by means of GIXRD and nanoindentation techniques vol.1126, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.03.053
  2. Radiation damage induced in Zircaloy-4 by 2.6 MeV proton irradiation vol.311, pp.3, 2015, https://doi.org/10.1007/s10967-017-5170-9
  3. In Situ TEM Study of Microstructure Evolution of Zr-Nb-Fe Alloy Irradiated by 800 keV Kr 2+ Ions vol.10, pp.4, 2015, https://doi.org/10.3390/ma10040437
  4. Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films vol.7, pp.3, 2015, https://doi.org/10.1557/mrc.2017.51
  5. Clustering on Magnesium Surfaces – Formation and Diffusion Energies vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-05366-1
  6. Multiscale Modelling of Self-Organization of Non-Equilibrium Point Defects in Irradiated $\alpha$-Zirconium vol.18, pp.4, 2017, https://doi.org/10.15407/ufm.18.04.295
  7. Impact of Zr content on multiphase zirconium-tungsten oxide (Zr-WOx) films and its MIS structure of Cu/Zr-WOx/p-Si Schottky barrier diodes vol.29, pp.4, 2015, https://doi.org/10.1007/s10854-017-8187-5
  8. Investigation of Particles and Gas Bubbles in Zr–0.8Sn–1Nb–0.3Fe Zr Alloys Irradiated by Krypton Ions vol.11, pp.10, 2015, https://doi.org/10.3390/ma11102056
  9. Departing from the mutual exclusiveness of strength and ductility in nanocrystalline metals with vacancy induced plasticity vol.157, pp.None, 2015, https://doi.org/10.1016/j.scriptamat.2018.07.037
  10. Influence of High Temperature Oxidation on Hydrogen Absorption and Degradation of Zircaloy-2 and Zr 700 Alloys vol.2019, pp.None, 2015, https://doi.org/10.1515/htmp-2017-0074
  11. Microstructure evolution of cold-worked Zircaloy-4 under 20 mev Cu ion irradiation vol.99, pp.4, 2015, https://doi.org/10.1080/09500839.2019.1641640
  12. Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation vol.152, pp.None, 2015, https://doi.org/10.1016/j.corsci.2019.02.031
  13. Radiation response of Ti2AlC MAX phase coated Zircaloy-4 for accident tolerant fuel cladding vol.523, pp.None, 2015, https://doi.org/10.1016/j.jnucmat.2019.05.021
  14. Determination of dose rate effects on Zircaloy oxidation using proton irradiation and oxygen transport modeling vol.523, pp.None, 2015, https://doi.org/10.1016/j.jnucmat.2019.05.039
  15. Degradation of Fuel Cladding Materials Based on Zirconium after Operation in VVER-Type Reactors vol.10, pp.6, 2015, https://doi.org/10.1134/s2075113319060091
  16. Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition vol.52, pp.2, 2020, https://doi.org/10.1016/j.net.2019.07.021
  17. Theoretical models for irradiation hardening and embrittlement in nuclear structural materials: a review and perspective vol.36, pp.2, 2015, https://doi.org/10.1007/s10409-020-00931-w
  18. Wear behavior of zirconium-4 alloy after different irradiation damage level vol.509, pp.None, 2015, https://doi.org/10.1016/j.apsusc.2020.145373
  19. Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux vol.362, pp.None, 2015, https://doi.org/10.1016/j.nucengdes.2020.110581
  20. The effect of neutron radiation on the yield stress of the Bushehr reactor clad vol.126, pp.7, 2020, https://doi.org/10.1007/s00339-020-03719-8
  21. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties vol.56, pp.9, 2015, https://doi.org/10.1007/s10853-020-05509-2
  22. Tackling Flow Stress of Zirconium Alloys vol.28, pp.4, 2015, https://doi.org/10.1007/s11831-020-09451-z
  23. The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste vol.137, pp.None, 2015, https://doi.org/10.1016/j.pnucene.2021.103736
  24. Interfaces Reduce Dislocation Loop Formation in Irradiated Nanolayered Zr-2.5Nb vol.200, pp.None, 2015, https://doi.org/10.1016/j.scriptamat.2021.113902
  25. Influence of vacancy on helium interaction with α-Zirconium vol.1989, pp.1, 2015, https://doi.org/10.1088/1742-6596/1989/1/012039
  26. High-energy surface processing of zirconium alloys for fuel claddings of water-cooled nuclear reactors vol.382, pp.None, 2015, https://doi.org/10.1016/j.nucengdes.2021.111364
  27. Morphological and mechanical evolution of nanostructured ZrN thin films under 165 keV argon ions irradiation vol.143, pp.None, 2015, https://doi.org/10.1016/j.pnucene.2021.104048