DOI QR코드

DOI QR Code

Synthesis of Perforated Polygonal Cobalt Oxides using a Carbon Nanofiber Template

탄소나노섬유 모형을 이용한 천공된 다각형 코발트 산화물 합성

  • Sin, Dong-Yo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 신동요 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2015.08.26
  • Accepted : 2015.10.14
  • Published : 2015.10.28

Abstract

Perforated polygonal cobalt oxide ($Co_3O_4$) is synthesized using electrospinning and a hydrothermal method followed by the removal of a carbon nanofiber (CNF) template. To investigate their formation mechanism, thermogravimetric analysis, field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are examined. To obtain the optimum condition of perforated polygonal $Co_3O_4$, we prepare three different weight ratios of the Co precursor and the CNF template: sample A (Co precursor:CNF template- 10:1), sample B (Co precursor:CNF template-3.2:1), and sample C (Co precursor:CNF template-2:1). Among them, sample A exhibits the perforated polygonal $Co_3O_4$ with a thin carbon layer (5.7-6.2 nm) owing to the removal of CNF template. However, sample B and sample C synthesized perforated round $Co_3O_4$ and destroyed $Co_3O_4$ powders, respectively, due to a decreased amount of Co precursor. The increased amount of the CNF template prevents the formation of polygonal $Co_3O_4$. For sample A, the optimized weight ratio of the Co precursor and CNF template may be related to the successful formation of perforated polygonal $Co_3O_4$. Thus, perforated polygonal $Co_3O_4$ can be applied to electrode materials of energy storage devices such as lithium ion batteries, supercapacitors, and fuel cells.

Keywords

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach: Energy Environ. Sci., 4 (2011) 3243. https://doi.org/10.1039/c1ee01598b
  2. M. Armand and J. M. Tarascon: Nature, 451 (2008) 652. https://doi.org/10.1038/451652a
  3. P. G. Bruce, B. Scrosati and J. M. Tarascon: Angew. Chem. Int. Ed., 47 (2008) 2930. https://doi.org/10.1002/anie.200702505
  4. F. Cheng, J. Liang, Z. Tao and J. Chen: Adv. Mater., 23 (2011) 1695. https://doi.org/10.1002/adma.201003587
  5. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon: Nautre, 407 (2000) 496. https://doi.org/10.1038/35035045
  6. B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim and Y. S. Huh: Nanoscale, 4 (2012) 5924. https://doi.org/10.1039/c2nr31438j
  7. S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali and K. S. Munawar: Electrochim. Acta, 105 (2013) 481. https://doi.org/10.1016/j.electacta.2013.04.179
  8. J. Park, W. G. Moon, G. P. Kim, I. Nam, S. Park, Y. Kim and J. Yi: Electrochim. Acta, 105 (2013) 110. https://doi.org/10.1016/j.electacta.2013.04.170
  9. X. Liu, G. Qiu and X. Li: Nanotechnology, 16 (2005) 3035. https://doi.org/10.1088/0957-4484/16/12/051
  10. B. Guo, C. Li and Z. Y. Yuan: Kor. J. Phys. Chem. C, 114 (2010) 12805. https://doi.org/10.1021/jp103705q
  11. Y. J. Lee, B. Y. Koo and H. J. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 360. https://doi.org/10.4150/KPMI.2014.21.5.360
  12. X. Liu, G. Qiu and X. Li: Nanotechnology, 16 (2005) 3035. https://doi.org/10.1088/0957-4484/16/12/051
  13. N. A. M. Barakat, M. S. Khil, F. A. Sheikh and H. Y. Kim: J. Phys. Chem. C, 112 (2008) 12225. https://doi.org/10.1021/jp8027353
  14. X. Chen, J. P. Cheng, Q. L. Shou, F. Liu and X. B. Zhang: Cryst. Eng. Comm., 14 (2012) 1271. https://doi.org/10.1039/C1CE05943B
  15. Y. Li, B. Tan and Y. Wu: Nano Lett., 8 (2008) 265. https://doi.org/10.1021/nl0725906
  16. H. Zhang, J. Wu, C. Zhai, X. Ma, N. Du, J. Tu and D. Yang: Nanotechnology, 19 (2008) 1.
  17. J. Liu, Y. Wan, C. Liu, W. Liu, S. Ji, Y. Zhou and J. Wang: Eur. J. Inorg. Chem., 24 (2012) 3825.
  18. X. Liu, S. W. Or, C. Jin, Y. Lv, W. Li, C. Feng, Feng Xiao and Y. Sun: Electrochim. Acta, 100 (2013) 140. https://doi.org/10.1016/j.electacta.2013.03.179
  19. X. Wang, L. Yu, X. L. Wu, F. Yuan, Y. G. Guo, Y. Ma and J. Yao: J. Phys. Chem. C, 113 (2009) 15553. https://doi.org/10.1021/jp904652m
  20. L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang: Energy Environ. Sci., 4 (2011) 2682. https://doi.org/10.1039/c0ee00699h
  21. H. Li, Z. Wang, L. Chen and X. Huang: Adv. Mater., 21 (2009) 4593. https://doi.org/10.1002/adma.200901710
  22. L. Chang, L. Mai, X. Xu, Q. An, Y. Zhao, D. Wang and X. Feng: RSC Adv., 3 (2013) 1947. https://doi.org/10.1039/C2RA22735E
  23. G. H. An and H. J. Ahn: J. Power Sources, 272 (2014) 828. https://doi.org/10.1016/j.jpowsour.2014.09.032
  24. X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu and Y. Li, Adv. Mater., 24 (2012) 5762. https://doi.org/10.1002/adma.201202271

Cited by

  1. Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.96
  2. Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction vol.28, pp.3, 2018, https://doi.org/10.3740/MRSK.2018.28.3.182