DOI QR코드

DOI QR Code

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni

Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향

  • Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 권나연 (서울과학기술대학교 신소재공학과) ;
  • 석명진 (강원대학교 재료금속공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2015.10.12
  • Accepted : 2015.10.20
  • Published : 2015.10.28

Abstract

The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

Keywords

References

  1. M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
  2. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  3. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  4. H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091. https://doi.org/10.1016/j.pmatsci.2006.09.001
  5. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  6. K. Araki and J. W. Halloran: J. Am Ceram. Soc., 88 (2005) 1108. https://doi.org/10.1111/j.1551-2916.2005.00176.x
  7. S.-T. Oh, W. Lee, S.-Y. Chang and M.-J. Suk: Res. Chem. Interm., 40 (2014) 2495. https://doi.org/10.1007/s11164-014-1659-9
  8. B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537. https://doi.org/10.1016/j.scriptamat.2007.11.006
  9. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  10. N.-Y. Kwon and S.-T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 259 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.259
  11. S.-T. Oh, Y.D. Kim and M.-J. Suk: Mater. Lett., 139 (2015) 268. https://doi.org/10.1016/j.matlet.2014.10.097
  12. K. Araki and J.W. Halloran: J. Am Ceram. Soc., 87 (2004) 2014.
  13. P.M. Robinson, H. J. Rosell and H. G. Scott: Mol. Cryst. Liq. Cryst., 10 (1970) 61. https://doi.org/10.1080/15421407008083487
  14. M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141. https://doi.org/10.1016/S0022-0248(00)00357-2
  15. G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709. https://doi.org/10.1006/jcat.1994.1257
  16. B. Jankovi , B. Adnadevi and S. Mentus: Thermoch. Acta, 456 (2007) 48. https://doi.org/10.1016/j.tca.2007.01.033
  17. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  18. L. M. Fabietti and R. Trivedi: Metall. Trans. A, 22A (1991) 1249.

Cited by

  1. Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture vol.25, pp.4, 2018, https://doi.org/10.4150/KPMI.2018.25.4.336