DOI QR코드

DOI QR Code

Effect of Processing Time on the Microarc Oxidation Coatings Produced on Magnesium AZ61 Alloy at Constant Hybrid Voltage

  • Ur Rehman, Zeeshan (School of Materials Science and Engineering, Changwon National University) ;
  • Jeong, Yeong Seung (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
  • Received : 2015.07.27
  • Accepted : 2015.08.13
  • Published : 2015.10.27

Abstract

MAO ceramic coatings were prepared on AZ61 magnesium alloy for various processing times ranging from 5 to 60 min, in an electrolyte solution based on silicate-fluoride. The mechanical, electrochemical and, microstructural properties and the phase compositions of the coating layers were investigated. In this work, unlike previous studies, coatings with high amounts of the $Mag_2SiO_4$ phase were formed which contained small amounts of MgO and $MgF_2$ at a processing condition of 30 min. A microstructural analysis revealed that the porosity of the coatings was reduced considerably with an increase in the processing time, together with a change in the pore geometry from an irregular to a spherical shape. Potentiodynamic polarization and mechanical testing results showed that the coatings acquired after a processing time of 30 min were superior to all of the others.

Keywords

References

  1. E. Ghali, Corrosion Resistance of Aluminium and Magnesium Alloys Understanding, Performance and Testing, Wiley, United States, (2010).
  2. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Appl. Surf. Sci., 252, 345 (2005). https://doi.org/10.1016/j.apsusc.2005.01.007
  3. Avedesian M and Baker H., ASM Speciality Handbook-Magnesium and Magnesium Alloys, ASM Int., USA, (1999).
  4. G. Song and A. Atrens, Adv. Eng. Mater., 1, 11 (1999). https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  5. U. Malayoglu, K. C. Tekin and S. Shrestha, Surf. Coat. Technol., 205, 1793 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.022
  6. G. L. Maker and J. Kruger, J. Electrochem. Soc., 137, 414 (1990). https://doi.org/10.1149/1.2086455
  7. E. Aghion B. Bronfin and D. Elezer, J. Mater. Process Technol., 117, 381 (2001). https://doi.org/10.1016/S0924-0136(01)00779-8
  8. T. S. Lim, H. S. Ryu and S. H. Hong, Corros. Sci., 62, 104 (2012). https://doi.org/10.1016/j.corsci.2012.04.043
  9. R. Ambat, N. N. Aung and W. Zhou, Corros. Sci., 42, 1433 (2000). https://doi.org/10.1016/S0010-938X(99)00143-2
  10. G. Song, A. Atrens, D. S. T. John, X. Wu and J. Nairn, J. Magn. Alloys, 2, 325 (2014). https://doi.org/10.1016/j.jma.2014.11.001
  11. R. Zeng, J. Zhang, W. Huang, W. Dietzel, K. U. Kainer, C. Blawert and K. E. Wei, Trans. Nonferrous Met. Soc. China, 16, 763 (2006). https://doi.org/10.1016/S1003-6326(06)60297-5
  12. M. Marya, L. G. Hector, R. Verma and W. Tong, Mater. Sci. Eng., 418, 341 (2006). https://doi.org/10.1016/j.msea.2005.12.003
  13. R. Arrabal, E. Matykina, F. Viejo, P. Skeldon and G. E. Thompson, Corros. Sci., 50, 1744 (2008). https://doi.org/10.1016/j.corsci.2008.03.002
  14. Y. Maoa, Z. Lia, K. Fenga, X. Guob, Z. Zhouc and Y. Wua, J. Mater. Process Technol., 219, 42 (2015). https://doi.org/10.1016/j.jmatprotec.2014.12.003
  15. R. O. Hussein, X. Nie and D. O. Northwood, Electrochim. Acta, 112, 111 (2013). https://doi.org/10.1016/j.electacta.2013.08.137
  16. Z. Shi, G. Song and A. Atrens, Corros. Sci., 48, 1939 (2006). https://doi.org/10.1016/j.corsci.2005.08.004
  17. A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel and K. U. Kainer, Surf. Coat. Technol., 202, 3513 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.033
  18. J. Curran, Trans. Inst. Met. Finish., 89, 295 (2011). https://doi.org/10.1179/174591911X13188464808830
  19. R. O. Hussein, X. Nie and D. O. Northwood, Corros. Mater., 38, 55, (2013).
  20. Z. P. Yao, D. L. Wang, Q. X. Xia, Y. J. Zhang, Z. H. Jiang and F. P. Wang, Surf. Eng., 28, 96 (2012). https://doi.org/10.1179/1743294411Y.0000000045
  21. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, W. Liu and T. Xu, Surf. Coat. Technol., 199, 121 (2005). https://doi.org/10.1016/j.surfcoat.2005.03.020
  22. H. Y. Hsiao and W. T. Tsai, Surf. Coat. Technol., 190, 299 (2005). https://doi.org/10.1016/j.surfcoat.2004.03.010
  23. R. Arrabal, E. Matykina, F. Viejo, F. P. Skeldon and G. E. Thompson, Corros. Sci., 50, 1744 (2008). https://doi.org/10.1016/j.corsci.2008.03.002
  24. H. Duan, C. Yan and F. Wang, Electrochim. Acta, 52, 5002 (2007). https://doi.org/10.1016/j.electacta.2007.02.021
  25. B. H. Ahn, D. G. Lee, H. J. Cho, S. R. Lee, F. Ahmed, Anwar M S and B. H. Koo, Electron. Mater. Lett., 9, 813 (2013). https://doi.org/10.1007/s13391-013-6018-2
  26. Y. Gaoa, A. Yerokhina, E. Parfenovb and A. Matthewsa, Electrochim. Acta, 149, 3842 (2014).
  27. Z. Yaoa b, Y. Xua, Y. Liua, D. Wanga, Z. Jianga and F. Wanga, J. Alloy. Compd., 509, 8469 (2011). https://doi.org/10.1016/j.jallcom.2011.06.011
  28. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  29. P. B. Srinivasan, J. Liang, R. G. Balajeee, C. Blawert, M. Stormer and W. Dietzel, Appl. Surf. Sci., 256, 3935 (2010).
  30. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  31. M. Stern and A. L. Geary, J. Electrochem. Soc., 104, 56 (1957). https://doi.org/10.1149/1.2428496