DOI QR코드

DOI QR Code

Effect of Grain Size on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-N-C Alloys

오스테나이트계 Fe-18Cr-10Mn-N-C 합금의 연성-취성 천이 거동에 미치는 결정립 크기의 영향

  • Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Seung-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Nam, Seung Hoon (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 이승용 (서울과학기술대학교 신소재공학과) ;
  • 남승훈 (한국표준과학연구원 산업측정표준본부) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2015.08.31
  • Accepted : 2015.08.31
  • Published : 2015.10.27

Abstract

The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.

Keywords

References

  1. P. J. Uggowitzer, M. Harzenmoser, Proc. 1st Int. Conf. on High Nitrogen Steels, J. Foct, A. Hendry, eds., The Institute of Metals, Lille, France (1988) p. 174-179.
  2. V. G. Gavriljuk, H. Berns, High Nitrogen Steels, Springer-Verlag Berlin Heidelberg, Germany (1999).
  3. L. Mujica, S. Weber, W. Theisen, in Proceedings of 1st International Conference on High Manganese Steels (HMnS 2011), ed. Y-K. Lee (Yonsei University, Seoul, Korea, 2011) p. B-20.
  4. F. Schmalt, H. Berns, V. G. Gavriljuk, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004) p. 437.
  5. N. Akdut, B. C. De Cooman, H. S. Kim, Proceedings of 1st Int. Conf. Interstitially Alloyed Stees (IAS 2008), Pohang, Korea (2008).
  6. V. G. Gavriljuk, B. D. Shanina and H. Berns, Acta Mater., 56, 5071 (2008). https://doi.org/10.1016/j.actamat.2008.06.021
  7. V. G. Gavriljuk, B. D. Shanina and H. Berns, Mater. Sci. Eng. A, 481, 707 (2008).
  8. H. Y. Ha, T. H. Lee, C. S. Oh and S. J. Kim, Scr. Mater., 61, 121 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.018
  9. T. H. Lee, E. Shin, C. S. Oh, H. Y. Ha and S. J. Kim, Acta Mater., 58, 3173 (2010). https://doi.org/10.1016/j.actamat.2010.01.056
  10. B. Hwang, T. H. Lee and S. J. Kim, Phil. Mag. Lett., 92, 93 (2012). https://doi.org/10.1080/09500839.2011.634841
  11. G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, Inc. (1988).
  12. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley & Sons, Inc. (1996).
  13. T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London (1997).
  14. J. D. Defilippi, K. G. Brickner and E. M. Gilbert, Trans. Metall. Soc. AIME, 245, 2141 (1969).
  15. R. L. Tobler and D. Meyn, Metall. Trans., 19A, 1626 (1988).
  16. P. Mullner, C. Solenthaler, P. J. Uggowitzer and M. O. Speidel, Acta Metall. Mater., 42, 2211 (1994). https://doi.org/10.1016/0956-7151(94)90300-X
  17. Y. Tomota, Y. Xia and K. Inoue, Acta Mater., 46, 1577 (1998). https://doi.org/10.1016/S1359-6454(97)00350-9
  18. B. Hwang, T. H. Lee, S. J. Park, C. S. Oh and S. J. Kim, Mater. Sci. Eng. A, 528, 7257 (2011). https://doi.org/10.1016/j.msea.2011.06.025
  19. B. Hwang and S. J. Kim, Mater. Sci. Eng. A, 531, 182 (2012). https://doi.org/10.1016/j.msea.2011.10.047
  20. Y. Tomota and S. Endo, ISIJ Int., 30, 656 (1990). https://doi.org/10.2355/isijinternational.30.656
  21. P. J. Uggowitzer, N. Paulus, M. O. Speidel, Proc. Application of Stainless Steels, Vol. 1, p. 62-72, Stockholm, Jernkontoret (1992).