DOI QR코드

DOI QR Code

Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics

  • Hussain, Ali (School of Advanced Material Engineering, Changwon National University) ;
  • Maqbool, Adnan (School of Advanced Material Engineering, Changwon National University) ;
  • Malik, Rizwan Ahmed (School of Advanced Material Engineering, Changwon National University) ;
  • Zaman, Arif (School of Advanced Material Engineering, Changwon National University) ;
  • Lee, Jae Hong (School of Advanced Material Engineering, Changwon National University) ;
  • Song, Tae Kwon (School of Advanced Material Engineering, Changwon National University) ;
  • Lee, Jae Hyun (School of Advanced Material Engineering, Changwon National University) ;
  • Kim, Won Jeong (Department of Physics, Changwon National University) ;
  • Kim, Myong Ho (School of Advanced Material Engineering, Changwon National University)
  • Received : 2015.07.27
  • Accepted : 2015.09.08
  • Published : 2015.10.27

Abstract

$Bi_{0.5}Na_{0.5}TiO_3$ (BNT) based ceramics are considered potential lead-free alternatives for $Pb(Zr,Ti)O_3$(PZT) based ceramics in various applications such as sensors, actuators and transducers. However, BNT-based ceramics have lower electromechanical performance as compared with PZT based ceramics. Therefore, in this work, lead-free bulk $0.99[(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}]_{(1-x)}La_xTiO_3-0.01SrZO_3$ (BNBTLax-SZ, with x = 0, 0.01, 0.02) ceramics were synthesized by a conventional solid state reaction The crystal structure, dielectric response, degree of diffuseness and electric-field-induced strain properties were investigated as a function of different La concentrations. All samples were crystallized into a single phase perovskite structure. The temperature dependent dielectric response of La-modified BNBT-SZ ceramics showed lower dielectric response and improved field-induced strain response. The field induced strain increased from 0.17%_for pure BNBT-SZ to 0.38 % for 1 mol.% La-modified BNBT-SZ ceramics at an applied electric field of 6 kV/mm. These results show that La-modified BNBT-SZ ceramic system is expected to be a new candidate material for lead-free electronic devices.

Keywords

References

  1. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Off. J. Eur. Union L37, 19 (2003).
  2. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  3. K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  4. X. X. Wang, H. L. W. Chan and C. L. Choy, J. Am. Ceram. Soc., 86, 1809 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03562.x
  5. Y. Hiruma, H. Nagata and T. Takenaka, J. Appl. Phys., 104, 124106 (2008). https://doi.org/10.1063/1.3043588
  6. A. B. Kounga, S. T. Zhang, W. Jo and J. Rodel, Appl. Phys. Lett., 92, 222902 (2008). https://doi.org/10.1063/1.2938064
  7. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., Part 1 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236
  8. C. Xu, D. Lin, and K. W. Kwok, Solid State Sci., 10, 934 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.11.003
  9. M. Chen, Q. Xu, B. H. Kim, B. K. Ahn, J. H. Ko, W. J. Kang, and O. J. Nam, J. Eur. Ceram. Soc., 28, 843 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.007
  10. E. Dul'kin, E. Mojaev, M. Roth, S. Greicius, and T. Granzow, Appl. Phys. Lett., 92, 012904 (2008). https://doi.org/10.1063/1.2828698
  11. A. B. Kounga, S. T. Zhang, W. Jo and J. Rodel, Appl. Phys. Lett., 92, 222902 (2008). https://doi.org/10.1063/1.2938064
  12. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rodel, Appl. Phys. Lett., 91, 112906 (2007). https://doi.org/10.1063/1.2783200
  13. F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi and C. M. Leung, J. Am. Ceram. Soc., 95, 1955 (2012). https://doi.org/10.1111/j.1551-2916.2012.05119.x
  14. G. Yao, X. Wang, Y. Wu and L. Li, J. Am. Ceram. Soc., 95, 614 (2012). https://doi.org/10.1111/j.1551-2916.2011.04793.x
  15. R. Zuo, C. Ye, X. Fang and J. Li, J. Eur. Ceram. Soc., 28, 871 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.08.011
  16. S. K. Acharya. B. G. Ahn, C. U. Jung, J. H. Koh, I. H. Choi and S. K. Lee, J. Alloy. Compd., 603, 248 (2014). https://doi.org/10.1016/j.jallcom.2014.03.087
  17. W. Lu, Y. Wang, G. Fan, X. Wang and F. Liang, J. Alloy. Compd., 509, 2738 (2011). https://doi.org/10.1016/j.jallcom.2010.10.041
  18. T. H Dinh, H. Y Lee, C. H Yoon, R. A Malik, Y. M. Kong, J. S Lee and V. D. N. Tran, J. Korean Phys. Soc., 62, 1004 (2013). https://doi.org/10.3938/jkps.62.1004
  19. Q. Zheng, C. Xu, D. Lin, D. Gao and K. W. Kwok, J. Phys. D Appl. Phys., 41, 125411 (2008). https://doi.org/10.1088/0022-3727/41/12/125411
  20. X. Dai, Z. Xu and D. Viehland, Phil. Mag. B, 70, 33 (1994). https://doi.org/10.1080/01418639408240192
  21. J. K. Lee, J. Y. Yi and K. S. Hong, J. Appl. Phys., 96, 1174 (2004). https://doi.org/10.1063/1.1760842
  22. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah and I. W. Kim, Sens. Actuators A, 158, 84 (2010). https://doi.org/10.1016/j.sna.2009.12.027
  23. R. A. Malik, J. K. Kang, A. Hussain, C. W. Ahn, H. S. Han and J. S. Lee, Appl. Phys. Exp., 7, 061502 (2014). https://doi.org/10.7567/APEX.7.061502
  24. A. Maqbool, A. Hussain, J. U. Rahman, T. K. Song, W. J. Kim, J. H. Lee and M. H. Kim, Ceram. Int., 40, 11905 (2014). https://doi.org/10.1016/j.ceramint.2014.04.026
  25. J. Y. Yi, J. K. Lee and K. S. Hong, J. Am. Ceram. Soc., 85, 3004 (2002).
  26. M. Acosta, N. Liu, M. Deluca, S. Heidt, I. Ringl, C. Dietz, R.W. Stark and W. Jo, J. Appl. Phys., 117, 134106 (2015). https://doi.org/10.1063/1.4916719
  27. R. Shannon, Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  28. A. Popovic, L. Bencze, J. Koruza, B. Mali and M. Kosec, Int. J. Mass Spectrom., 309, 70 (2012). https://doi.org/10.1016/j.ijms.2011.08.028
  29. A. Zaman, Y. Iqbal, A. Hussain, M. H. Kim and R. A. Malik, J. Mater. Sci., 49, 3205 (2014). https://doi.org/10.1007/s10853-014-8024-7
  30. J. U. Rahman, A. Hussain, A. Maqbool, G. H. Ryu, T. K. Song, W. J. Kim and M. H. Kim, J. Alloy. Compd., 593, 97 (2014). https://doi.org/10.1016/j.jallcom.2014.01.031
  31. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang and J. S. Lee, Trans. Electr. Electron. Mater., 12, 64 (2011). https://doi.org/10.4313/TEEM.2011.12.2.64
  32. K. Uchino and S. Nomura, Ferroelectrics Lett., 44, 55 (1982).