DOI QR코드

DOI QR Code

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene

화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀

  • Park, Sang Jun (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Lee, Imbok (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Bae, Dong Jae (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Nam, Jungtae (Department of Physics and Graphene Research Institute, Sejong University) ;
  • Park, Byung Jun (KEPCO Research institute, Korea Electric Power Corporation) ;
  • Han, Young Hee (KEPCO Research institute, Korea Electric Power Corporation) ;
  • Kim, Keun Soo (KEPCO Research institute, Korea Electric Power Corporation)
  • Published : 2015.09.30

Abstract

In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.

본 연구에서는 그래핀의 인위적인 합성방법인 화학기상증착법을 활용하여 합성 파라미터들을 변화시켜줌으로써 그래핀의 물성을 조절하는 연구를 수행하였다. 먼저, 메탄가스를 탄소원으로 순수 그래핀을 합성하였고, 액상의 피리딘을 원료로 사용하여 질소가 도핑된 그래핀을 합성하였다. 각각의 그래핀의 물성은 라만 분광법, X선 광전자 분광법(XPS)을 통한 기초 광물성 측정과 게이트 전압에 따른 그래핀 채널의 전류-전압 응답특성을 통한 전기적 수송현상 측정에 의해 평가되었다. 메탄가스로 합성된 그래핀의 라만 분광 스펙트럼에서는 G-peak과 2D-peak가 선명히 보였고, XPS에서 C1s-peak가 선명하였고, 아울러 전하중성점은 게이트 전압 약 +4 V 정도에서 나타났다. 피리딘을 원료로 합성된 그래핀의 라만 분광 스펙트럼에서는 D-peak, G-peak 그리고 다소 약해진 2D-peak 등이 보였고, XPS에서는 C1s-peak은 물론 N1s-peak도 나타났으며, 전하중성점은 게이트 전압 약 -96 V 정도에서 나타났다. 결과적으로 우리는 화학기상증착법을 활용하여 그래핀의 물성을 성공적으로 조절하였다.

Keywords

References

  1. K. S. Novoselov et al, "Electric Field Effect in Atomically Thin Carbon Film", Science, 306 pp 666-669, (2004) https://doi.org/10.1126/science.1102896
  2. A. Reina et al, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition", Nano Letters, 9, pp 30-35, (2009) https://doi.org/10.1021/nl801827v
  3. K. S. Kim et al, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, pp 706-710, (2009) https://doi.org/10.1038/nature07719
  4. X. Li et al, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils", Science, 324, pp 1312-1314, (2009) https://doi.org/10.1126/science.1171245
  5. S. Bae et al, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology, 5, pp 574-578, (2010) https://doi.org/10.1038/nnano.2010.132
  6. A. Reina et al, "Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates", J. Phys. Chem. C, 112, pp 17741-17744, (2008) https://doi.org/10.1021/jp807380s
  7. D. C. Wei et al, "Synthesis of N-doped Graphene by Chemical Vapor Deposition and Its Electrical Properties" Nano Letters, 9, pp 1752-1758 (2009) https://doi.org/10.1021/nl803279t
  8. Z. Jin et al, "Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets" ACS Nano, 5, pp 4112-4117 (2011) https://doi.org/10.1021/nn200766e
  9. A. Das et al, "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor", Nature Nanotechnology, 3, pp 210-215, (2008) https://doi.org/10.1038/nnano.2008.67
  10. T. Schiros et al, "Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene" Nano Letters, 12, pp 4025-4031 (2012) https://doi.org/10.1021/nl301409h