
Journal of Korean Institute of Intelligent Systems
Vol. 25, No. 5, October 2015, pp. 515-521
http://dx.doi.org/10.5391/JKIIS.2015.25.5.515

 | 515

1. Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted 

sequences of sizes   and , so that the result forms one sorted sequence of  

elements. 

Recent work in this area are the publications [2-4], that describe algorithms which 

are all asymptotically optimal regarding the number of comparisons as well as 

assignments. However, these algorithms are structurally quite complex. 
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요  약 
SymMerge 알고리즘은 두 입력수열 와   (   ,     ≤  )에 대한 효율적 병합 알고리즘이다. 

SymMerge 알고리즘의 비교횟수와 관련한 복잡도 분석을 하고자 하며 지금까지의 복잡도 분석은 복잡도의 상계 

값을 찾으므로 점근적 계산방법을 통해 이루어졌다. 이 논문에서는 지금까지의 분석방법과는 달리 SymMerge 

알고리즘의 대표적 두 special case에 해당하는 “Symmetric case”와 “Maximum spanning case”에 있어서 병

합을 위해 요구되는 정확한 비교횟수를 즉 비교횟수의 최소상계 값을 계산해 보이고자 한다. “Symmetric case”
의 경우 사이즈        ≥ 인 임의의 입력수열에 대해 SymMerge 알고리즘이 필요로 하는 비교횟수

는 정확하게  log

   log 이고 “Maximum spanning case”의 경우 사이즈       

인 임의의 입력수열에 대해 SymMerge 알고리즘이 필요로 하는 비교횟수는 정확하게 



   log 


  임을 계산해 보인다. 추가로 이들 두 special case에 있어서 요구되는 비교횟

수가 재귀적 함수에 의해 정의될 수 있음을 보인다.

 

키워드 : 머징 알고리즘, worst case complexity (키워드 수는 5개 정도가 적당)

Abstract
The SymMerge algorithm is an efficient merging algorithm for input sequences   and   of sizes   

and     ≤  . We consider complexity analysis for SymMerge algorithm regarding to the required 

number of comparisons. The focus of the previous complexity analysis was on finding the values of upper 

bounds, i.e. showing the asymptotical optimality. In this paper, in a different way from the previous com-

plexity analysis, we show that the overall required number of comparisons for two representative special 

cases “symmetric case” and “maximum spanning case” can be calculated exactly i.e. the least upper bounds 

regarding to the required number of comparisons are calculated. Symmerge requires exactly 

 log

   log   comparisons for symmetric case of sizes        ≥   of input se-

quences and exactly 

   log 


    comparisons for maximum spanning case of sizes 

        of input sequences. Additionally we show that the complexity of the Symmerge algo-

rithm regarding to the overall required number of comparisons for these special cases can be defined by re-

currence relations. 
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In [5] we presented a stable minimum storage merging al-

gorithm called SymMerge and investigated its worst case 

complexity regarding the number of comparisons as well 

as assignments. The focus of the complexity analysis was 

on finding the values of upper bounds, i.e. showing the 

asymptotical optimality. We considered the set consisting 

of all merging pairs (nodes) which arise during the 

computation. Then we partitioned the set into  re-

cursion groups such that each recursion group , 

  ⋯  has at most  pairs. For each recursion 

group the value of upper bound for the required number 

of comparisons was calculated. So, for all  recursion 

groups the value of upper bound for the required number 

of comparisons could be calculated and showed the 

asymptotical optimality of the SymMerge algorithm. 

In this paper we consider complexity analysis for two spe-

cial cases of input sequences of SymMerge “symmetric 

case” and “maximum spanning case” in a different way 

from the previous complexity analysis. We show that the 

overall required number of comparisons for these special 

cases can be calculated exactly i.e. the least upper 

bounds regarding to the required number of comparisons 

are calculated. Symmerge requires exactly 

 log

 log comparisons for symmetric case 

of sizes       ≥  of input sequences and ex-

actly 

log


 comparisons for 

maximum spanning case of sizes       of 

input sequences. 

Additionally we show that the complexity of the 

Symmerge algorithm regarding to the overall required 

number of comparisons for these special cases can be de-

fined by recurrence relations. 

2. SymMerge Algorithm

We start with a brief introduction of our approach to 

merging [5, 6]. Let  and  be two adjacent ascending 

sorted sequences with ≤ . We decompose the longer 

sequence  into three parts  such that    and 

either    or   +1. Then we start at the left-

most element in  and at the rightmost element in   and 

compare the elements at these positions. We continue do-

ing so by symmetrically comparing element-pairs from the 

outsides to the inside. There can occur at most one posi-

tion, where the relation between the compared elements 

alters from 'not greater' to 'greater'. So we have found the 

bounds for a rotation, i.e. side-changing elements. Due to 

this technique of symmetric comparisons we call our algo-

rithm SymMerge. Moreover the computation for finding 

the bounds for a rotation may also happen in the style of 

a binary search. Then only ⌊logmin⌋ com-

parisons are necessary. By recursive application of this 

technique to the arising subsequences we get a sorted 

result.

Now we describe the SymMerge algorithm formally. We 

dene ≤      iff ≤      for all elements 

∈ and for all elements ∈.
We merge  and  as follows:

If ≤ , then

(a1) we decompose  into  such that   

and either    or   .

(a2) we decompose  into  (≥ , ≥ ) 

and   into  ≥ , ≥   such that 

  ,    and ≤ ,  .

(a3) we rotate  to .

(a4) we recursively merge  with  as well as 

 with . Let ′  and ′  be the resulting 

sequences, respectively.

else

(b1) we decompose  into  such that   

and either    or   .

(b2) we decompose  into  (≥ , ≥ ) 

and   into  ≥ , ≥   such that 

  ,    and ≤ ,   .

(b3) we rotate  to .

(b4) we recursively merge  with  as well as 

 with . Let ′  and ′  be the resulting 

sequences, respectively.

′′  then contains all elements of  and  in sorted 

order.

 

3. Complexity Analysis

In this section we consider complexity analysis regard-

ing the number of comparisons. Unless stated otherwise, 

let us denote   ,  , ≤, ⌊log⌋. 

Further let 
 and 

  denote the sizes of sequences 

merged on the th recursion level where the index  de-

notes the order of the merged sequences. Initially (on the 

recursion level ), it holds 
   and 

  . On the 

next recursion level , (

) is divided into two pairs 

(children nodes). We denote these by 
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where the sequences of lengths 
  and 

 are merged 

with the sequences of lengths 
  and 

 respectively. On 

the recursion level , the sequences of lengths 




 
 ⋯ and 

 are merged with the sequences of 

lengths 
 
 
 ⋯ and 

 respectively (with ≤ ≤ ). 

In the following let (

) denote a merging pair in 

which the size of the left (right) sequence is 
 

 . As 

result of the decomposition process we get such merging 

pairs. Accordingly let   denote the pair given as an 

input.

For each input pair  , ≤, the SymMerge algo-

rithm generates a binary tree in which each node corre-

sponds to a merging pair (

). We call such a binary 

tree a decomposition tree. 

Till now we have considered complexity analysis of the 

SymMerge algorithm using recursion group [6]. We have 

partitioned decomposition trees into several recursion 

groups. In this paper we consider 2 different special cases 

generated by the SymMerge algorithm and have look at a 

new complexity analysis for these special cases regarding 

the number of comparisons.

Symmetric Case

There are input pairs   such that in their decom-

position trees every merging pair (subsequence merging) 

always triggers two nonempty merging pairs. So, if 

 , then there are exactly  merging pairs on each 

recursion level   ≤ ≤ log. We call this special case 

symmetric case. Fig. 1 shows an example of symmetric 

case for input pair .

Lemma 1. ([1] Lemma 3.1) If 




 for any    and 

integer  ≥ , then 


 log ≤  log



.

그림 1. Symmetric case의 예
Fig. 1. An example of symmetric case

Theorem 2. Given input pair of size   of symmetric 

case and let       ≥ , then the required num-

ber of comparisons on the recursion level  is 

⌊log ⌋  ⌊log⌋  . 
Proof. In symmetric case every merging pair (subsequence 

merging) always triggers two nonempty merging pairs and 

the size of each pair is divided in half. For example, the 

size  of the right part of the merging pair is halved on 

the recursion level . Therefore, on the recursion level  

there are  merging pairs altogether and each merging 

pair has the size      . Hence 

the required number of comparisons on the recursion lev-

el  is ⌊log⌋                 □
Theorem 3. If       ≥ , then the complexity of 

the SymMerge algorithm has the least upper bound 

 log

 log for any input pair   of 

the symmetric case.

Proof. The binary search of recursion level 0 requires 

log comparisons. For each recursion level 

   ⋯  we need  log


  comparisons. 

On the last recursion level  we need  





log   







log

 






log    
comparisons. So the overall number of comparisons for all 

 recursion levels is log 




 log









log  log  log




  

 . Since 




    , the 

complexity of the SymMerge algorithm has the least upper 

bound (최소상계) log  log
   log


 log




 log .                                        □

Maximum Spanning Case

There are input pairs   that have the maximal re-

cursion depth . In this case   is decomposed into either 




  and 


  or 


  

and 


. Without loss of generality we suppose 

that  is decomposed into 


  and 




  and each 
 
    ⋯ is 

decomposed into 


  and 


 


. We call this case maximum span-

ning case. Fig. 2 shows a decomposition tree for max-
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imum spanning case. 

그림 2. Maximum Spanning의 경우
Figure 2. Maximum spanning case

We have the following lemma.

Lemma 4. 





⌊log⌋  . 

Proof. It holds 





⌊log⌋  




  . 

Since 




   , it holds 





⌊log⌋  
   .          □

Theorem 5. If  , then the complexity of the 

SymMerge algorithm has the upper bound  log


 log for any input sequence  of the 

maximum spanning case.

Proof. The binary search of recursion level  requires 

log comparisons. On each recursion level 

≤ ≤  we need ⌊log⌋⌊log ⌋
 comparisons. For the final recursion level  we 

need ⌊log⌋⌊log⌋ comparisons. 

Here, it holds 





 

  . So the overall number 

of comparisons for all   recursion levels is equal to 






⌊log⌋⌊log⌋




⌊log⌋. 

Since 





 

   and by lemma 1 and lemma 2  , 

SymMerge needs at most  log

 log

log log

log compar-

isons for the maximum spanning case.                 □

Now we compare the least upper bound 

 log

 log for the symmetric case with the 

upper bound  log

 log for the max-

imum spanning case. We have  log


 log log

 log

 loglog≥  for all  . This 

means that the complexity of the SymMerge algorithm has 

the upper bound  log

 log for any in-

put pair   of the symmetric case. So the following 

corollary holds.

Corollary 6. If  , then the complexity of the 

SymMerge algorithm has the upper bound  log


 log for the symmetric case and maximum 

spanning case.

Additionally corollary 6 can be explained as follows:

The overall required number of comparisons from re-

cursion level 0 to recursion level  for the symmetric 

case is log 




 log


. Here, the number 

of the considered merging pairs is 

⋯  . The overall required number of 

comparisons for the merging pairs 









⋯


 of the max-

imum spanning case is 




⌊log⌋. Here, the num-

ber of the considered merging pairs is   as 

well. However we know it holds log 






 log


 ≤





⌊log⌋. 
Further, the required number of comparisons for the  re-

cursion level  of the symmetric case is 




log 
 ⌊log ⌋. The required number of compar-

isons for the remaining part of the maximum spanning 

case is 




⌊log⌋⌊log⌋ where it 

holds 





 

  . By lemma 1, we have 






⌊log⌋⌊log⌋≤ ⌊log ⌋
Hence, the least upper bound  log


 log 
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for the symmetric case is equal or less than  log


 log which corresponds to upper bound of 

the maximum spanning case.

In [7] we considered the following relationship between 

  and  of input pair   for maximum spanning 

case. 

Theorem 7. [7] Let any input pair   of maximum 

spanning case be given. Then   satisfies the relation-

ship between   and  such that ≥ . 

Theorem 8. Let any input pair  ,    of 

maximum spanning case be given. Then  

   is decomposed into 

   and 

   on each recursion 

level    ⋯.

Proof. Since input pair   corresponds to max-

imum spanning case,   is decomposed into 




  and 


  on the recursion 

level  where it holds 
 


   

 and 
 


  . By the 

identical calculation method    is de-

composed into    and    

on the recursion level , ⋯,    is 

decomposed into   and 

   on the recursion level  and so 

on. Further,   

   is decomposed into      and 

     on the 

recursion level  where      and 

     corre-

spond the last two input pairs on the recursion level 

.                                             □

From theorem 8 we have 
   , 

   , 

⋯, 
   , 

   , 


   . Therefore we can see that it holds 


 

 ⋯
 

    ⋯  

       .

Further the number of the required comparisons for merg-

ing of maximum spanning case can be calculated exactly 

as follows:

Theorem 9. Let any input pair   with   and  

   of maximum spanning case be given. Then 

SymMerge requires exactly 

log


 

comparisons for merging input pair .

Proof. Since   and    , the overall number 

of the required comparisons for merging   is 






⌊log⌋




⌊log  ⌋. Since  






⌊log⌋ 





⌊log⌋   

and 




⌊log  ⌋  ⋯
 


, we have 




 loglog


  




 


log


.                   □

4. Complexity Analysis of SymMerge 
Algorithm using Recurrence Relation

In this section we show the complexity for the special 

cases “symmetric case and maximum spanning case” re-

garding to the number of comparisons can be defined by 

recurrence relations.

Let   denote the overall required number of 

comparisons for any input pair   of the symmetric 

case. Then   is given as follows:

Definition 10. The complexity  ≤ is defined 

recursively as follows: 

  ⌊log⌋
 ⌊log⌋ ⌊⌋⌊⌋

⌈⌉⌈⌉
Let   denote the overall required number of com-

parisons for any input pair   of the maximum span-

ning case. Then   is given as follows:

Definition 11. The complexity  ≤ is defined 

recursively as follows:
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  ⌊log⌋
 ⌊log⌋⌊⌋

 ⌈⌉
 

Now, let   denote the overall required number 

of comparisons for input   of the case such that on 

the recursion level    is partitioned to 




  and 


  where 


  

corresponds with the maximum special case. Then it holds 

 ⌊log⌋⌈⌉. In the 

following we show that it holds  ≤ 

for any input .

Theorem 8. For any  ,≤, ≤.

Proof. If  , then  ⌊log⌋
≤. If ≥, then the following holds:

 ⌊log⌋⌈⌉
⌊log⌋⌊⌋
⌈⌉
   ⌈⌉

 ⌊log⌋⌊⌋
⌈⌉

 

Since  

⌈⌉ ⌊log ⌈⌉⌋
≤⌊log ⌊⌋⌋ ⌊⌋ 
and 

⌈⌉≤⌈⌉, 
we have  ≤.

Further, by applying theorem 8, the definition   

with    can be simplified as follows:

Let 
  denote the overall required number 

of comparisons for any input pair   of the 

maximum spanning case, i.e. 
 is a 

simplified definition of 
.

Definition 12. The complexity 
  is defined 

recursively as follows:

  


 ⌊log⌋⌊log  ⌋


 

5. Conclusion

We showed that the SymMerge algorithm requires ex-

actly  log

 log comparisons for sym-

metric case of       ≥  and exactly 




log


 comparisons for maximum 

spanning case of       where   and  

represent the sizes of input sequences  and . 

Additionally we showed that the complexity of the 

Symmerge algorithm regarding to the overall required 

number of comparisons for these special cases can be de-

fined by recurrence relations. 

Based on this study, the least upper bound for com-

plexity of the SymMerge algorithm may be calculated. We 

conjecture that if      , then the complexity 

of the SymMerge algorithm has the least upper bound 

 log

 log in general. 
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