DOI QR코드

DOI QR Code

A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics

유역특성인자를 활용한 Sacramento 장기유출모형의 매개변수 지역화 기법 연구

  • Kim, Tae-Jeong (Department of Civil Engineering, Chonbuk National University) ;
  • Jeong, Ga-In (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Ki-Young (Infrastructure Research Center, K-water Institute) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 김태정 (전북대학교 토목공학과, 방재연구센터) ;
  • 정가인 (전북대학교 토목공학과, 방재연구센터) ;
  • 김기영 (한국수자원공사 K-water 연구원 기반시설연구소) ;
  • 권현한 (전북대학교 토목공학과, 방재연구센터)
  • Received : 2015.06.29
  • Accepted : 2015.08.12
  • Published : 2015.10.31

Abstract

The simulation of natural streamflow at ungauged basins is one of the fundamental challenges in hydrology community. The key to runoff simulation in ungauged basins is generally involved with a reliable parameter estimation in a rainfall-runoff model. However, the parameter estimation of the rainfall-runoff model is a complex issue due to an insufficient hydrologic data. This study aims to regionalize the parameters of a continuous rainfall-runoff model in conjunction with a Bayesian statistical technique to consider uncertainty more precisely associated with the parameters. First, this study employed Bayesian Markov Chain Monte Carlo scheme for the estimation of the Sacramento rainfall-runoff model. The Sacramento model is calibrated against observed daily runoff data, and finally, the posterior density function of the parameters is derived. Second, we applied a multiple linear regression model to the set of the parameters with watershed characteristics, to obtain a functional relationship between pairs of variables. The proposed model was also validated with gauged watersheds in accordance with the efficiency criteria such as the Nash-Sutcliffe efficiency, index of agreement and the coefficient of correlation.

미계측유역의 유출량 모의는 수문학 분야에서 필수적인 사항이다. 강우-유출 모형을 이용하여 신뢰성 있는 유출량을 모의하기 위한 핵심사항은 강우-유출 모형의 매개변수를 추정하는 것이다. 하지만 현재 우리나라는 불충분한 수문자료로 인해 매개변수 추정에 어려움이 존재한다. 본 연구의 목표는 불확실성 반영을 위한 Bayesian 통계기법 기반의 강우-유출 모형의 매개변수를 지역화 하는 것이다. 그 방법은 다음과 같다. 첫째, 본 연구는 세계적으로 널리 사용되고 있는 Sacramento 강우-유출 모형에 Bayesian Markov Chain Monte Carlo 기법을 연계한 Bayesian Sacramento 강우-유출 모형을 사용하여 계측유역을 대상으로 13개 매개변수를 최적화하고 각 매개변수의 사후분포를 도출하였다. 둘째, 매개변수와 유역특성인자 사이에 회귀특성을 얻기 위해 다중선형회귀분석을 적용하여 유역특성을 고려한 지역화 매개변수를 결정하였다. 다중회귀분석을 통하여 산정된 지역화 매개변수를 계측유역에 전이하여 유출량을 모의 후 통계적 효율기준인 N-S계수, 일치계수 및 상관계수를 사용하여 지역화 매개변수 검증을 수행하였다.

Keywords

References

  1. Beven, K. (2001). Rainfall-RunoffModelling The Primer. John Wiley & Sons Ltd, Chichester, England.
  2. Box, G.E., and Tiao, G.C. (1973). Bayesian inference in statistical analysis. Addison-Wesely publishing company.
  3. Burnash, R.J.C., Ferral, R.L., and McGuire, R.A. (1973). A generalized streamflow simulation system, conceptual modeling for digital computers. Joint Federal, State River Forecast Center, Sacramento, CA.
  4. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. Chapman & Hall/ CRC.
  5. Gelman, A., and Rubin, D.B. (1992). "Inference from iterative simulations using multiple sequences (with discussion)." Statistical Science, Vol. 7, No. 4, pp. 457-472. https://doi.org/10.1214/ss/1177011136
  6. Hasting, W.K. (1970). "Monte carlo sampling methods using markov chains and their applications." Biometrika, Vol. 57, No. 1, pp. 97-109. https://doi.org/10.1093/biomet/57.1.97
  7. Jung, Y.H., Jung, C.G., Jung, S.W., Park, J.Y., and Kim, S.J. (2012). "Estimation of upstream ungaguged watershed streamflow using downstream discharge data." Journal of the Korean Society of Agricultural Engineers, Vol. 54, No. 6, pp. 169-176. https://doi.org/10.5389/KSAE.2012.54.6.169
  8. Kim, J.G., Kwon, H.H., and Kim, D.K. (2014). "A development of hourly rainfall simulation Technique Based on Bayesian MBLRP Model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 821-831. https://doi.org/10.12652/Ksce.2014.34.3.0821
  9. Kim, S.U., and Lee, K.S. (2008). "At-site low flow frequency analysis using bayesian MCMC: I. theoretical background and construction of prior distribution." Journal of Korea Water Resources Association, Vol. 41, No. 1, pp. 35-47. https://doi.org/10.3741/JKWRA.2008.41.1.035
  10. Kim, U., and Kaluarachchi, J.J. (2008). "Application of parameter estimation and regionalization methodologies to ungauged basins of the upper blue Nile river basin, Ethiopia." Journal of Hydrology, Vol. 362, No. 1, pp. 39-56. https://doi.org/10.1016/j.jhydrol.2008.08.016
  11. Krause, P., Boyle, D.P., and Base, F. (2005). "Comparison of different efficiency criteria for hydrological model assessment." Advances in Geosciences, Vol. 5, pp. 89-97. https://doi.org/10.5194/adgeo-5-89-2005
  12. Kwon, H.-H., Moon, Y.-I., Kim, B.-S., and Yoon, S.-Y. (2008). "Parameter optimization and uncertainty analysis of the NWS-PC rainfall-runoff model coupled with bayesian markov chain monte carlo inference scheme." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 4B, pp. 383-392.
  13. Kwon, H.-H., Kim, J.-G., Lee, J.-S., and Na, B.-K. (2012). "Uncertainty assessment of single event rainfallrunoff model using bayesian model." Journal of Korea Water Resources Association, Vol. 45, No. 5, pp. 505-516. https://doi.org/10.3741/JKWRA.2012.45.5.505
  14. Kwon, H.-H., Kim, J.-G., and Park, S.-H. (2013). "Derivation of flood curve with uncertainty of rainfall and rainfall-runoff model" Journal of Korea Water Resources Association, Vol. 46, No. 1, pp. 59-71. https://doi.org/10.3741/JKWRA.2013.46.1.59
  15. Lee, S.H., and Kang, S.U. (2007). "A parameter regionalization study of a modified tank model using characteristic factors of watersheds." Journal of Korean Society of Civil Engineers, Vol. 27, No. 4-B, pp. 379-385.
  16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). "Equation of state calculations by fast computing machines." The Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092. https://doi.org/10.1063/1.1699114
  17. Mwakalila, S. (2003). "Estimation of stream flows of ungauged catchment for river basin management." Physics and Chemistry of the Earth, Vol. 28, pp. 935-942. https://doi.org/10.1016/j.pce.2003.08.039
  18. Nash, J., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  19. Park, Y.H., and Yoo, C.S. (2008). "Evaluation of stream flow data observed in the pyungchang river basin using the IHACRES model." Journal of The Korean Society of Hazard Mitigation, Vol. 8, No. 4, pp. 123-133.
  20. Scargle, J.D. (1998). "Studies in astronomical time series analysis. V. Bayesian blocks, a new method to analyze structure in photon counting data." The Astrophysical Journal, Vol. 504, No. 1, pp. 405. https://doi.org/10.1086/306064
  21. Sorooshian, S., Duan, Q., and Gupta, V.K. (1993). "Calibration of rainfall-runoff models: Application of global optimization to the sacramento soil moisture accounting model." Water Resources Research, Vol. 29, No. 4, pp. 1185-1194. https://doi.org/10.1029/92WR02617
  22. Walpole, R.E., Myers, R.H., Myers, S.L., and Ye, K. (2002). Probability and Statistics for Engineers and Scientists, Upper Saddle River, NJ: Prentice-Hall
  23. Willmott, C.J. (1981). "On the validation of models." Physical Geography, Vol. 2, No. 2, pp. 184-194.
  24. Yokoo, Y., Kazamaa, S., Sawamotoa, M., and Nishimurab, H. (2001). "Regionalization of lumped water balance model parameters based on multiple regression." Journal of Hydrology, Vol. 246, pp. 209-222. https://doi.org/10.1016/S0022-1694(01)00372-9

Cited by

  1. Development of dam inflow simulation technique coupled with rainfall simulation and rainfall-runoff model vol.49, pp.4, 2016, https://doi.org/10.3741/JKWRA.2016.49.4.315