DOI QR코드

DOI QR Code

CSLR을 갖는 인셋 급전 패치 안테나 설계 및 제작

Design and Fabrication of Inset Fed Patch Antenna Loaded with CSLR

  • 손혁우 (경북대학교 전자공학과) ;
  • 김병문 (경북도립대학교 IT특약계열) ;
  • 박진택 (창신대학교 모바일통신공학과) ;
  • 홍재표 (경일대학교 전자공학과)
  • 투고 : 2015.03.24
  • 심사 : 2015.05.23
  • 발행 : 2015.05.31

초록

본 논문에서는 인셋 급전 구조에서 마이크로스트립 패치 안테나 소형화를 위해 접지면에 CSLR 9개 적용한 안테나('CSLR 09' 안테나)와 8개 적용한 안테나('CSLR 08' 안테나)를 설계한 후, 유전율 2.5, 두께 0.787 mm인 기판으로 안테나를 제작하여 반사손실과 복사패턴에 대한 이론 결과와 실험 결과를 비교하였다. 'CSLR 09'와 'CSLR 08' 안테나의 이론 결과에서는 공진주파수 2.82 GHz에 반사손실이 각각 -25.35 dB와 -16.77 dB를 보였고, 측정결과에서는 공진주파수 2.885 GHz에 반사손실이 각각 -30.72 dB와 -14.90 dB를 나타내어 두 경우 모두에서 거의 일치하는 결과를 얻었다. 또한 E-면과 H-면 복사패턴에 대한 실험 결과에서도 이론 결과와 거의 일치하는 양호한 결과를 얻었다.

In this paper, design and fabrication for inset fed microstrip patch antennas applied to the $3{\times}3$ array CSLR and eight CSLR, respectively, to the ground plane are studied. The theoretical results are compared to the experimental results for the return loss and radiation pattern. For 'CSLR 09' antenna, the theoretical result for the resonant frequency and the return loss are 2.82 GHz and - 25.35 dB, respectively. The experimental results are obtained for a 2.885 GHz, -30.72 dB. Theoretical results for the resonant frequency and the return loss of the 'CSLR 08' antenna are 2.82 GHz, -16.77 dB, respectively, and the experimental results are obtained for a 2.885 GHz, -14.90 dB. In addition, E-plane and H-plane radiation patterns in comparison with designed and fabricated antennas are in good agreement.

키워드

참고문헌

  1. E. Ekmekci and G. T. Sayan, "A novel dual-band metamaterial structure," Progress in Electromagnetics Research Symp. Proc., vol. 1, Moscow, Russia, Aug. 2009, pp. 87-90.
  2. O. Yurduseven, A. E. Yilmaz, G. T. Sayan, "A compact five-band SLR Type metamaterial," Proc. of 6th EUCAP(European Conf. on Antennas and Propagation), Prague, Czech Republic, vol. 4, Mar. 2012, pp. 2865-2867.
  3. F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-$\varepsilon$ stopband microstrip lines based on complementary split ring resonator," IEEE, Microw. Wireless Compon. Lett., vol. 14, no. 6, June 2004, pp. 280-282. https://doi.org/10.1109/LMWC.2004.828029
  4. B. Garg and D. Saleem, "A wide band rectangular microstrip transceiver using 'array of circular SRR' DNG metamaterial structure for microwave applications in s band," Research J. of Physical and Applied Sciences, vol. 2, no. 3, June 2013, pp. 36-42.
  5. A. G. Jahromi, F. Mohajeri, and N. Feiz, "Miniaturization of a rectangular microstrip patch antenna loaded with metamaterial," World Academy of Science, Engineering and Technology, vol. 7, no. 4, 2013, pp. 668-671.
  6. J. Hong and B. Kim, "A study on inset fed microstrip antenna loaded with complementary single loop resonator," J. of the Korea Institute of Electronic Communication. Sciences, vol. 9, no. 8, 2014, pp. 921-926. https://doi.org/10.13067/JKIECS.2014.9.8.921
  7. H. Son, B. Kim, and J. Hong, "Fabrication and experiment of inset fed patch antenna loaded with CSLR for size reduction," In Proc. of the Korea Institute of Electronic Communication Sciences, 2014 Conf., vol. 8, no. 2, Cheonan, Korea, Nov. 2014, pp. 221-224.
  8. J. Hong, B. Kim, H. Son, and Y. Cho, "A study on the inset fed rectangular microstrip patch antenna for S-band applications," J. of the Korea Institute of Information and Communication Engineering vol. 18, no. 10, 2014, pp. 2359-2366. https://doi.org/10.6109/jkiice.2014.18.10.2359
  9. Y. Park, "Characteristics of microstrip array antenna," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1281-1286. https://doi.org/10.13067/JKIECS.2012.7.6.1281
  10. O. Kim, "Design of Dual-band Microstrip Antenna for Wireless Communication Applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1275-1279. https://doi.org/10.13067/JKIECS.2012.7.6.1275