DOI QR코드

DOI QR Code

초전도 에너지 저장 기술에 대한 고찰

A Consideration on the Superconductivity Energy Storage Technology

  • 투고 : 2015.04.28
  • 심사 : 2015.06.23
  • 발행 : 2015.06.30

초록

최근, 전력산업에서는 지구 온난화에 대비하여 에너지 이용 효율 극대화하기 위한 방안으로 초전도 에너지 저장 장치에 큰 관심을 가지고 있다. 초전도 에너지 저장장치는 비 첨두시에 대량의 전기에너지를 손실 없이 자계 또는 운동 에너지의 형태로 저장하였다가 첨두시에 이를 다시 전기에너지로 변환하여 사용함으로서 피크부하의 균등화 및 순간정전 보상을 실현, 전기 에너지 이용 효율의 극대화를 기할 수 있다. 따라서 본 연구에서는 초전도 에너지 저장기술에 대한 개념, 연구개발 현황 및 그 적용 사례 등을 조사, 분석하여, 전력계통 적용 기반기술을 확립하고자 한다.

Recently, the power industry has a great interest in the superconducting energy storage device as a way to maximize energy efficiency to cope with global warming. A superconducting energy storage device can archive maximization of electric energy use efficiency by storing in the form of a magnetic field energy or a kinetic energy without loss a large amount of electrical energy at the non-peak load and then converting it again into electric energy at the peak load. Therefore, in this study, such as the concept of the superconducting energy storage technologies, the present state of its research and development and its applications are surveyed and analyzed to establish methodology applying the superconducting energy storage technologies to power system.

키워드

참고문헌

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer "Theory of Superconductivity," Physical Review, vol. 108, no. 5, 1957, pp. 1175-1205. https://doi.org/10.1103/PhysRev.108.1175
  2. K. E. Nielsen, "Superconducting magnetic energy storage in power systems with renewable energy sources," Master' Thesis, Norwegian University of Science and Technology, 2010.
  3. M. G. Molina, Dynamic Modelling and Control Design of Advanced Energy Storage for Power System Applications, Dynamic Modelling. www.intechopen.com, Jan. 2010, pp. 49-93.
  4. A. Badel, "Superconducting Magnetic Energy Storage using High Temperature Superconductor for Pulse Power Supply," Doctor's Thesis, University of Grenoble, Sep. 2010.
  5. K. Nagashima, H. Seino, N. Sakai, and M. Murakami, "Superconducting Magnetic Bearing for a Flywheel Energy Storage System using Superconducting Coil and Bulk Superconductor," Physica C, vol. 469, Oct. 2009, pp. 1244-1249. https://doi.org/10.1016/j.physc.2009.05.245
  6. Y. Miyagawa, H. Kameno, R. Takahata, and H. Ueyama, "A 0.5 kWh Flywheel Energy Storage System using A High-Tc Superconducting Magnetic Bearing," IEEE Trans. Applied Superconductivity, vol. 9, no. 2. June 1999, pp. 996-999. https://doi.org/10.1109/77.783466
  7. S. Nagaya, N. Kashima, M. Minami, H. Kawashima, and S. Unisuga, "Study on the High Temperature Superconducting Magnetic Bearing for 10 kW Flywheel Energy Storage System," IEEE Trans. Applied Superconductivity, vol. 11, no. 1, Mar. 2001, pp. 1649-1652. https://doi.org/10.1109/77.920097
  8. T. Ichihara, K. Matsunaga, M. Kita, I. Hirayabashi, M. Isono, M. Horose, K. Yoshii, K. Kurihara, O. Saito, S. Saito, M. Murakami, H. Takabayashi, M. Natsumeda and N. Koshizuka,"Application of Superconducting Magnetic Bearings to a 10kWh-Class Flywheel Energy Storage System," IEEE Trans. on Applied Superconductivity, vol. 15, no. 2, June 2005, pp. 2245-2248. https://doi.org/10.1109/TASC.2005.849622
  9. Y. Yamauchi, N. Uchiyama, E. Suzuki, M. Kubota, M. Fujii, and H. Ohsaki, "Development of 50kWh-Class Superconducting Flywheel Energy Storage System,"Proc. of International Symposium on Power Electronics, Electrical Drives, Automation and Motion 2006, Taormina, Italy, May 2006, pp. 484-486.
  10. M. Strasik, John Hull, John Mittleider, John Gonder, Kevin McCrary, and Carl McIver, "Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing,"2011 Energy Storage Systems Program, Boeing Research and Technology, San Diego, CA. USA, Oct. 2011.
  11. Phil Johnson, "Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing, "Proc. of International Conference on Electrical Energy Storage Applications and Technologies 2005, SanFrancisco, CA. USA, Oct. 2005.
  12. Y. Ko, "Superconductivity Flywheel Energy Storage Principle and Development Cases," Proc. of the 2014 spring Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, Pusan, Korea, 2013, pp. 477-479.
  13. K. Lee, I. Choy, W. Cho, and J. Back, "MPPT and Yawing Control of a New Horizontal-Axis Wind Turbine with Two Parallel-Connected Generators," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 81-89. https://doi.org/10.13067/JKIECS.2012.7.1.081
  14. M. Jeong, C. Moon, H. Kim, Y. Chang, and T. Park,"A Study on Design of 50kW PMSG for Micro-grid Application," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 4, 2014, pp. 527-536. https://doi.org/10.13067/JKIECS.2014.9.4.527
  15. J. Park and Y. Bae, "Development of a Technical Road Map for Future Research in Wind Power Generation using Grading Criteria as a Rubric for Research Focus," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 3, 2011, pp. 417-423.