DOI QR코드

DOI QR Code

Study on the control of marine biofouling developed on the surface of porous ceramics

세라믹 다공체 표면에 발생하는 해양 생물 오손 억제에 관한 연구

  • Kang, Jimin (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seunggu (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, YooTack (Department of Advanced Materials Engineering, Kyonggi University)
  • 강지민 (경기대학교 신소재공학과) ;
  • 강승구 (경기대학교 신소재공학과) ;
  • 김유택 (경기대학교 신소재공학과)
  • Received : 2015.09.25
  • Accepted : 2015.10.14
  • Published : 2015.10.31

Abstract

Recently, removing methods of red tide has been attempted by filtering the organisms using the ceramic porous bodies. However, the marine biofouling could be developed on the surfaces of porous ceramic body after use for more than one month, and it might decrease the function of the specimen. In this paper, a method of inhibiting marine biofouling by changing the physical properties or surface-modification of ceramic porous body was studied. After experiment with six different ceramic porous bodies, it was found that the specimen of lower porosity and water absorption showed the least amount of biofouling. In addition, by increasing the surface roughness with silica particles bonded to the surface of specimen, the amount of biofouling caused by large marine life such as barnacle and mussel could be decreased. On the other hand, when the surface of specimen was coated and fused by glass powder, the amount of biofouling was rather increased. This might be due to eluted inorganic ions from the glass which can promote the growth of the microorganism. In conclusion, the environmental-friendly methods to reduce the amount of marine biofouling, such as controlling the physical properties and the surface roughness of the porous ceramics, can be possible without the use of dangerous substances. So it is expected for the results obtained to be applicable to a marine structure.

최근 세라믹 다공체를 이용하여 적조 생물을 여과, 제거하려는 연구가 시도되고 있다. 하지만 해양 환경에서 1개월 이상이 경과하면 다공체 표면에 해양 생물 오손(biofouling)이 발생하여 기능이 저하되는 문제가 나타난다. 본 논문에서는 세라믹 다공체의 특성 변화 또는 표면 개질을 통하여 해양 생물 오손을 억제하는 방법에 대하여 연구하였다. 6 종류의 세라믹 다공체를 시험한 결과, 기공율과 흡수율이 낮을수록 생물 오손량이 낮게 나타났다. 또한 다공체 표면에 실리카 입자를 결합시켜 표면 거칠기를 증가시키면, 따개비 등의 대형 해양 생물로 인한 오손량을 감소시킬 수 있었다. 한편 세라믹 다공체 표면에 유리분말을 융착 코팅시키면 오히려 생물 오손량이 증가하였는데, 이는 유리에서 용출되어 나오는 무기질 성분 이온들이 미생물의 생육을 촉진했기 때문이다. 본 연구로부터 세라믹 다공체의 물리적 성질 및 표면 거칠기를 제어하면 위험 물질을 사용하지 않고도 친환경적으로 해양 생물 오손량을 줄일 수 있음을 확인하였으며, 따라서 본 결과를 향후 해양 구조물 등에 적용할 수 있을 것으로 기대된다.

Keywords

References

  1. KBS News, 2015. 8. 18, http://news.changwon.kbs.co.kr/4609/.
  2. Hankyoreh Daily Newspaper, 2015. 8. 17, http://www.hani.co.kr/arti/society/area/704815.html.
  3. Site for Information of Cochlodinium Polykrikoides, National fisheries Research & Development Institute, http://www.nfrdi.re.kr/redtide/webpage/operation/operation_01.jsp.
  4. S.G. Lee, Y.S. Lee and W.A. Lim, "Study on prevention of red tide using sea bottom water and red tide barrier membrane", Proceedings of the Korean Environmental Sciences Society Conference 16 (2007) 211.
  5. S.J. Shin, The second year report, Public Welfare Project: The development of bio/ceramic membrane pontoon for marine purification, Ministry of Science, ICT, & Future Planning, Korea (2014).
  6. J.H. Shim and M.S. Jeong, "Development and succession of marine fouling organisms on artificial substrata", J. Oceanol. Soc. Korea 22 (1987) 257.
  7. S.H. Park, J.Y. Seo and J.W. Choi, "Community structure of sessile organisms on PVC plates according to different submerged timings and durations in Jangmok Bay, Korea", Korean J. Malacol. 27 (2011) 99. https://doi.org/10.9710/kjm.2011.27.2.099
  8. D.H. Jung, A.R. Kim, D.S. Moon, S.W. Lee, H.J. Kim and Y.H. Ham, "Preliminary experimental study on biofouling in real sea environment", J. Ocean Eng. & Technol. 23 (2009) 39.
  9. D.M. Yebra, S. Kiil and D.J. Kim "Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings", Prog. Org. Coat. 50 (2004) 75. https://doi.org/10.1016/j.porgcoat.2003.06.001
  10. C.X. Liu, D.R. Zhang, Y. He, X.S. Zhao and R. Bai, "Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches", Journal of Membrane Science 346 (2010) 121. https://doi.org/10.1016/j.memsci.2009.09.028
  11. S.H. Cho, S.N. Ryu, W.B. Hwang and B.S. Yoon, "Anti-fouling property of hydrophobic in sea water", J. Korean Society for Marine Environment and Energy 16 (2013) 82. https://doi.org/10.7846/JKOSMEE.2013.16.2.82
  12. R. Dinshram, R. Subasri, K.R.C. Somarafu, K. Jayaraj, L. Vedaprakash, Krupa Ratnam, S.V. Joshi and R. Venkatesan, "Biofouling studies on nanoparticle-based metal oxide coatings on glass coupons exposed to marine environment", Colloids and Surfaces B: Biointerfaces 74 (2009) 75. https://doi.org/10.1016/j.colsurfb.2009.06.028
  13. J. Wehing, J. Koser, P. Lindner, C. Luder, S. Beutel, S. Kroll and K. Rezwan "Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration", Material Science and Engineering C 48 (2015) 179. https://doi.org/10.1016/j.msec.2014.12.001
  14. M.A. Kang and S.G. Kang, "Effect of activated carbon on bloating properties of artificial lightweight aggregates containing coal reject ash and bottom ash", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 201. https://doi.org/10.6111/JKCGCT.2013.23.4.201
  15. K.G. Lee, "Bloating mechanism for coal ash with iron oxide", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 77. https://doi.org/10.6111/JKCGCT.2014.24.2.077
  16. Wikipedia, "Growth medium", https://en.wikipedia.org/wiki/Growth_medium.