DOI QR코드

DOI QR Code

Removal of Ring Artifact in Computed Tomography

전산화단층촬영장치에서 링 아티팩트 제거

  • Chon, Kwon Su (Department of Radiological Science, Catholic University of Daegu)
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2015.09.14
  • Accepted : 2015.10.25
  • Published : 2015.10.30

Abstract

Hard X-ray has been widely used in medical and industrial fields because it can be applied to observe the inside of a sample. Computed tomography provides sectional images of the sample through the reconstruction of the projection images. The quality of sectional images strongly depends on that of projection images. Ring artifact appeared on the seconal image can be made by the abnormal pixels of the detector used. In this study, we examine the ring artifact ratio in the circle phantom as a function of detection error of the detector used in computed tomography. The ring artifact increased with the increment of detection error under parallel and fan beam geometries and strongly increased near the center of rotation. The corrections, dead pixel and flat field corrections, for the images taken with the detector are required before the image reconstruction process to reduce the ring artifact in the computed tomography.

경엑스선은 물체의 내부구조 관찰에 유용하고 의료 및 산업분야에 광범위하게 사용되고 있다. 전산화단층촬영기법은 수백장의 투영영상을 이용하여 재구성함으로써 물체의 2차원 단면 영상을 얻을 수 있다. 단면 영상의 품질은 투영영상에 크게 의존한다. 투영영상을 얻는 검출기의 픽셀에 따라 링 아티팩트가 나타난다. 본 연구는 visual C++기반으로 한 원형 팬텀에서 검출기의 검출 에러에 따른 링 아티팩트 비를 조사하였다. 평행빔 및 부채살빔에서 링 아티팩트 비는 검출기의 검출 에러에 비례하여 나타났고, 회전 중심에 가까울수록 링 아티팩트는 강하게 나타났다. 전산화단층촬영의 단면 영상에서 링 아티팩트를 줄이기 위해서는 영상재구성 이전에 검출기의 보정이 필요함을 알 수 있었다.

Keywords

References

  1. W.A. Kalender, "X-ray computed tomography," Phy. Med. Biol. Vol. 51, ppR29-R43, 2006. https://doi.org/10.1088/0031-9155/51/13/R03
  2. B.S.B. Sun W, R.K. Leach, "An overview of industrial X-ray computed tomography," NPL Report ENG 32, 2012.
  3. G.N. Hounsfield, "Computerized transverse axial scanning (tomography): I. Description of system," Br. J. Radiol. Vol. 46, pp1016-1022, 1973. https://doi.org/10.1259/0007-1285-46-552-1016
  4. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
  5. K.S. Chon "Noise Properties for Filtered Back Projection in CT Reconstruction," J. Kor. Soc. Radiol., Vol 8, pp357-364, 2015.
  6. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE Press, Washington, 2009.
  7. F.E. Boas and D. Fleischmann, "CT artifacts: Causes and reduction techniques," Imaging Med. Vol. 4, pp229-240, 2012. https://doi.org/10.2217/iim.12.13
  8. L.A. Shepp, B.F. Logan, "The Fourier Reconstruction of a Head Section," IEEE Trans. Nucl. Sci., Vol. 21, pp21-43, 1974.
  9. G.N. Ramachandran, A.V. Lakhshminarayanan, "Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of Fourier transforms,' Proc. Natl. Sci. Acad. USA, Vol.68, pp2236-2240, 1971.
  10. M. Lee, S. Kwon and K..S. Chon, "Analysis of Noise Power Spectrum According to Flat-Field Correction in Digital Radiography," J. Kor. Soc. Radiol., Vol 7, pp227-232, 2013. https://doi.org/10.7742/jksr.2013.7.3.227

Cited by

  1. Improvement in Reconstruction Time Using Multi-Core Processor on Computed Tomography vol.9, pp.7, 2015, https://doi.org/10.7742/jksr.2015.9.7.487