DOI QR코드

DOI QR Code

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Jin-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Choi, Kwang-Hwan (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Son, Hye-Young (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
  • 투고 : 2015.05.26
  • 심사 : 2015.07.17
  • 발행 : 2015.11.01

초록

Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.

키워드

참고문헌

  1. Abeydeera, L. R. and B. N. Day. 1997. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol. Reprod. 57:729-734. https://doi.org/10.1095/biolreprod57.4.729
  2. Alberio, R., N. Croxall, and C. Allegrucci. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19:1627-1636. https://doi.org/10.1089/scd.2010.0012
  3. Bavister, B. 2004. The role of animal studies in supporting human assisted reproductive technology. Reprod. Fertil. Dev. 16:719-728. https://doi.org/10.1071/RD04087
  4. Boediono, A., M. Ooe, M. Yamamoto, M. Takagi, S. Saha, and T. Suzuki. 1993. Production of chimeric calves by aggregation of in vitro fertilized bovine embryos without zonae pellucidae. Theriogenology 40:1221-1230. https://doi.org/10.1016/0093-691X(93)90292-D
  5. Boediono, A., T. Suzuki, L. Y. Li, and R. A. Godke. 1999. Offspring born from chimeras reconstructed from pathenogenetic and in vitro fertilized embryos. Mol. Reprod. Dev. 53:159-170. https://doi.org/10.1002/(SICI)1098-2795(199906)53:2<159::AID-MRD5>3.0.CO;2-X
  6. Boiani, M., S. Eckardt, N. A. Leu, H. R. Scholer, and K. J. McLaughlin. 2003. Pluripotency deficit in clone overcome clone-clone aggregation : epigenetic complementation? EMBO J. 22:5304-5312. https://doi.org/10.1093/emboj/cdg507
  7. Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655. https://doi.org/10.1016/S0092-8674(03)00392-1
  8. Davis, D. L. 1985. Culture and storage of pig embryos. J. Reprod. Fertil. Suppl. 33:115-124.
  9. de la Fuente, R. and W. A. King. 1997. Use of a chemically defined system for the direct comparison of inner cell mass and trophectoderm distribution in murine, porcine and bovine embryos. Zygote 5:309-320. https://doi.org/10.1017/S0967199400003890
  10. Emerson, M., A. R. Travis, R. Bathgate, T. Stojanov, D. I. Cook, E. Harding, D. P. Lu, and C. O'Neill. 2000. Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. The J. Biol. Chem. 275:21905-21913. https://doi.org/10.1074/jbc.M001719200
  11. Friel, R., S. v. d. Sar and P. J. Mee. 2005. Embryonic stem cells: Understanding their history, cell biology and signalling. Adv. Drug Deliv. Rev. 57:1894-1903. https://doi.org/10.1016/j.addr.2005.08.002
  12. Keefer, C. L., D. Pant, L. Blomberg, and N. C. Talbot. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:147-168. https://doi.org/10.1016/j.anireprosci.2006.10.009
  13. Kim, H. S., G. S. Lee, S. H. Hyun, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2004. Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61:1381-1393. https://doi.org/10.1016/j.theriogenology.2003.08.012
  14. Kim, S., J. H. Kim, E. Lee, Y. W. Jeong, M. S. Hossein, S. M. Park, S. W. Park, J. Y. Lee, Y. I. Jeong, H. S. Kim, Y. W. Kim, S. H. Hyun and W. S. Hwang. 2010. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18:93-101. https://doi.org/10.1017/S0967199409990372
  15. Lee, G. S., H. S. Kim, S. H. Hyun, D. Y. Kim, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2003. Improved developmental competence of cloned porcine embryos with different energy supplements and chemical activation. Mol. Reprod. Dev. 66:17-23. https://doi.org/10.1002/mrd.10329
  16. Lee, S. G., C. H. Park, D. H. Choi, H. S. Kim, H. H. Ka, and C. K. Lee. 2007. In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Mol. Reprod. Dev. 74:1436-1445. https://doi.org/10.1002/mrd.20728
  17. Li, M., Y. H. Li, Y. Hou, X. F. Sun, Q. Sun, and W. H. Wang. 2004. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12:43-48. https://doi.org/10.1017/S0967199404002679
  18. Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. Okuda, R. Matoba, A. A. Sharov, M. S. Ko, and H. Niwa. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9:625-635. https://doi.org/10.1038/ncb1589
  19. Nagy, A. and J. Rossant. 2001. Chimaeras and mosaics for dissecting complex mutant phenotypes. Int. J. Dev. Biol. 45:577-582.
  20. Nagy, A., J. Rossant, R. Nagy, W. Abramow-Newerly, and J. C. Roder. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 90:8424-8428. https://doi.org/10.1073/pnas.90.18.8424
  21. Neganova, I. E., G. G. Sekirina, and U. Eichenlaub-Ritter. 2000. Surface-expressed E-cadherin, and mitocondrial and microtuble distrbution in rescue of mouse embryos from 2- cell block by aggregation. Mol. Hum. Reprod. 6:454-464. https://doi.org/10.1093/molehr/6.5.454
  22. Park, J. K., H. S. Kim, K. J. Uh, K. H. Choi, H. M. Kim, T. Lee, B. C. Yang, H. J. Kim, H. H. Ka, H. Kim, and C. K. Lee. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in PloS one 8:e52481. https://doi.org/10.1371/journal.pone.0052481
  23. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
  24. Pickering, S. J., P. R. Braude, M. Patel, C. J. Burns, J. Trussler, V. Bolton, and S. Minger. 2003. Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod. Biomed. Online 7:353-364. https://doi.org/10.1016/S1472-6483(10)61877-9
  25. Talbot, N. C. and A. Blomberg Le. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4:235-254. https://doi.org/10.1007/s12015-008-9026-0
  26. Tang, P. C. and J. D. West. 2000. The effects of embryo stage and cell number on the composition of mouse aggregation chimaeras. Zygote 8:235-243. https://doi.org/10.1017/S0967199400001039
  27. Vassiliev, I., S. Vassilieva, L. F. Beebe, S. J. Harrison, S. M. McIlfatrick, and M. B. Nottle. 2010. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell. Reprogram. 12:223-230. https://doi.org/10.1089/cell.2009.0053
  28. Wood, S. A., N. D. Allen, J. Rossant, A. Auerbach, and A. Nagy. 1993. Non-injection methods for the production of embryonic stem cell-embryo chimeras. Nature 365:87-89. https://doi.org/10.1038/365087a0
  29. Yoshioka, K., C. Suzuki, A. Tanaka, I. M. Anas, and S. Iwamura. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66:112-119. https://doi.org/10.1095/biolreprod66.1.112
  30. Zhou, W., T. Xiang, S. Walker, R. V. Abruzzese, E. Hwang, V. Farrar, B. Findeisen, S. Sadeghieh, F. Arenivas, S. H. Chen, and I. Polejaeva. 2008. Aggregation of bovine cloned embryos at the four-cell stage stimulated gene expression and in vitro embryo development. Mol. Reprod. Dev. 75:1281-1289. https://doi.org/10.1002/mrd.20875

피인용 문헌

  1. Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs vol.7, pp.None, 2015, https://doi.org/10.7717/peerj.8143
  2. Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived fr vol.34, pp.2, 2015, https://doi.org/10.12750/jarb.34.2.130