DOI QR코드

DOI QR Code

Comparison of Plant Growth, Dormancy Breaking, Yield, and Biological Activities of Extracts in Four Asparagus Cultivars

아스파라거스 4 품종의 생장, 휴면타파, 수량 및 추출물의 생리활성 비교

  • Lee, Jong Won (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Heo, Buk Gu (Naju Foundation of Natural Dyeing Culture) ;
  • Bae, Jong Hyang (Department of Horticulture Industry, College of Life Science and Resource, Wonkwang University) ;
  • Ku, Yang Gyu (Department of Horticulture Industry, College of Life Science and Resource, Wonkwang University)
  • 이종원 (경북대학교 농업과학기술연구소) ;
  • 허북구 ((재)나주시 천연염색문화재단) ;
  • 배종향 (원광대학교 원예산업학과) ;
  • 구양규 (원광대학교 원예산업학과)
  • Received : 2015.05.10
  • Accepted : 2015.08.04
  • Published : 2015.10.31

Abstract

The present study investigated the plant growth characteristics, dormancy breaking, yield, and biological activity properties (contents of flavonoid and phenolic compounds, nitrite scavenging activity, and the survival rate of lung cancer) of four asparagus cultivars. It aimed to examine selection possibilities for high efficacy cultivar to promote biological activity in asparagus cultivation in South Korea. The results showed that the number of asparagus buds and root fresh and dry weight of 'Jersey Giant', 'Jersey Supreme', and 'NJ953' were higher than those of 'UC157' cultivar, and there were no differences in the number of roots. The dormancy breaking period of 'Jersey Supreme' was prolonged compared to the other cultivars. 'Jersey Giant' and 'NJ953' had more total spears, and greater spear diameter, and yield than other cultivars. Total flavonoid content was unaffected by cultivar and was higher in ethanol extraction than in hot water extraction. Total phenolic compound content was the lowest in 'NJ953' for both hot water and ethanol extracts, whereas in the ethanol extraction, 'UC157' had the highest, with $39.23mg{\cdot}L^{-1}$. 'Jersey Giant', 'Jersey Supreme', and 'NJ953' all showed greater than 70% nitrite scavenging activity. In the case of ethanol extraction, the survival rates of lung cancer in extracts from 'Jersey Giant', 'Jersey Supreme', and 'UC157' were lower than 'NJ 953' cultivar, regardless of extraction concentration. The survival rate of lung cancer was lower in hot water extraction than in ethanol extraction, so that the consumption of asparagus is also expected to be helpful in preventing lung cancer. The growth characteristics and biological activity effects of edible asparagus that were identified in the present study are expected to be useful in selection of high efficacy cultivars for biological activity and utilization.

본 연구는 아스파라거스 4 품종의 생장 특성, 휴면타파, 수량 및 생리활성 함량(플라보노이드와 페놀화합물 함량, 아질산염 소거 및 폐암세포 생존율)를 조사하였다. 국내 아스파라거스 재배 시 생리활성 고효능 품종 선택 가능성을 검토하기 위해 실험을 수행하였다. 'Jersey Giant', 'Jersey Supreme' 그리고 'NJ953' 품종들은 'UC157' 품종보다 눈의 개수, 뿌리의 생체중과 건물중 등이 높았지만 뿌리의 개수에 차이가 없었다. 'Jersey Supreme' 품종의 휴면타파 기간은 다른 품종들보다 길었다. 'Jersey Giant'와 'NJ953'품종들은 다른 품종들보다 순의 개수, 직경 및 생산량이 높았다. 총 플라보노이드 함량은 품종 간에 차이가 없었지만 에탄올 추출에서 열수 추출보다 총 플라보노이드 함량이 높았다. 총 페놀화합물은 열수 추출과 에탄올 추출 모두 'NJ953' 품종은 가장 낮은 반면에 에탄올 추출에서 'UC157'에서 가장 많은 $39.23mg{\cdot}L^{-1}$을 나타냈다. 'Jersey Giant', 'Jersey Supreme' 그리고 'NJ953'의 아질산염 소거 효과는 70% 이상 효과를 나타냈다. 에탄올 추출 시 추출물의 농도와 관계없이 'Jersey Giant', 'Jersey Supreme' 그리고 'UC157' 품종들은 'NJ953' 품종보다 폐암세포 생존율 낮은 결과를 나타냈다. 또한 폐암세포 생존율은 에탄올 추출보다 열수 추출에서 낮아 아스파라거스 식용도 폐암 예방 효과에 도움이 될 것으로 기대된다. 본 연구결과를 통해 규명된 아스파라거스의 생육 특성과 생리 활성 효과는 생리활성 고효능 품종 선택 및 이용에 도움이 될 것으로 기대된다.

Keywords

References

  1. Cha, J.Y. and Y.S. Cho. 2001. Biofunctional activities of citrus flavonoids. J. Korean Soc. Agric. Chem. Biotechnol. 44:122-128.
  2. Chin, C.K. and S.A. Garrison. 2008. Functional elements from asparagus for human health. Acta Hortic. 776:219-225.
  3. Daningsih, E. 2005. Growth development and related changes in morphology-physiology of asparagus plants associated with their productivity. Ph D thesis, Massey University, Palmerston North, New Zealand.
  4. Dewanto, V., X. Wu, K.K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50:3010-3014. https://doi.org/10.1021/jf0115589
  5. Fanasca, S., Y. Rouphael, E. Venneria, E. Azzini, A. Durazzo, and G. Maiani. 2009. Antioxidant properties of raw and cooked spears of green asparagus cultivars. Int. J. Food Sci. Technol. 44:1017-1023. https://doi.org/10.1111/j.1365-2621.2008.01871.x
  6. Fuentes-Alventosa, J. M., S. Jaramillo, G. Rodriguez-Gutierrez, P. Cermeno, J. A. Espejo, A. Jimenez-Araujo, R. Guillen-Bejarano, J. Fernandez-Bolanos, and R. Rodriguez-Arcos. 2008. Flavonoid profile of green asparagus genotypes. J. Agric. Food Chem. 56:6977-6984. https://doi.org/10.1021/jf8009766
  7. Frei, B. and J.V. Higdon. 2003. Antioxidant activity of tea polyphenols in vitro: Evidence from animal studies. J. Nutr. 133:3275-3284.
  8. Gorinstein, S., Y.S. Park, B.G. Heo, J. Namiesnik, H. Leontowicz, M. Leontowicz, K.S. Ham, J.Y. Cho, and S.G. Kang. 2009. A comparative study of phenolic compounds and antioxidant and antiproliferative activities in frequently consumed raw vegetables. Eur. Food Res. Technol. 228:903-911. https://doi.org/10.1007/s00217-008-1003-y
  9. Gray, J.I. and L.R. Dugan Jr. 1975. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40:981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  10. Guerrero, T.E., P. Vejarano, J.L. Paredes, and R. Cepeda. 2012. Phytochemical screening and quantification of total flavonoids of canned white asparagus (Asparagus officinalis). Acta Hortic. 950:241-245.
  11. Haynes, R.J. 1987. Accumulation of dry matter and changes in storage carbohydrate and amino acid content in the first 2 years of asparagus growth. Sci. Hortic. 32:17-23. https://doi.org/10.1016/0304-4238(87)90012-4
  12. Heo, B.G., S.U. Chon, Y.J. Park, J.H. Bae, S.M. Park, Y.S. Park, H.G. Jang, and S. Gorinstein. 2009. Antiproliferative activity of Korean wild vegetables on different human tumor cell lines. Plant Foods Hum. Nutr. 64:257-263. https://doi.org/10.1007/s11130-009-0138-8
  13. Jia, Z., M. Tang, and J. Wu. 1999. The determination of flavonoid contents in mulberry and they scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  14. Kawaguchi, K., T. Mizuno, K. Aida, and K. Uchino. 1997. Hesperidin as an inhibitor of lipases from porcine pancreas and pseudomonas. Biosci. Biotechnol. Biochem. 61:102-104. https://doi.org/10.1271/bbb.61.102
  15. Kim, E.J., J.Y. Choi, M. Yu, M.Y. Kim, S. Lee, and B. H. Lee. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 44:337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  16. Ku, Y.G., D.J. Woolley, A.R. Hughes, and M.A. Nichols. 2007. Temperature effects on dormancy, bud break and spear growth in asparagus (Asparagus officinalis L.). J. Hortic. Sci. Biotechnol. 82:446-450. https://doi.org/10.1080/14620316.2007.11512257
  17. Lee, E.J., K. S. Yoo, and B.S. Patil. 2010. Development of a rapid HPLC-UV methods for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 76:C703-C709.
  18. Lee, J.H., J.H. Bae, and Y.G. Ku. 2013. Effect of two male cultivars of asparagus with low temperature treatment on bud breaking and spear growth. Kor. J. Hort. Sci. Technol. 31: 141-145.
  19. Lee, J.W., J.H. Lee, I.H. Yu, S. Gorinstein, J.H. Bae, and Y.G. Ku. 2014. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods Hum. Nutr. 69:175-181. https://doi.org/10.1007/s11130-014-0418-9
  20. Lee, K. S., M. G. Kim, and K. Y. Lee. 2006. Antioxidative activity of ethanol extract from lotus (Nelumbo nucifera) leaf. J. Korean Soc. Food Sci. Nutr. 24:338-342.
  21. Maeda, T., K. Honda, T. Sonoda, S. Motoki, K. Inoue, T. Suzuki, K. Oosawa, and M. Suzuki. 2010. Light condition influences rutin and polyphenol contents in asparagus spears in the mother-fern culture system during the summer-autumn harvest. J. Jpn. Soc. Hortic. Sci. 79:161-167. https://doi.org/10.2503/jjshs1.79.161
  22. Mosmann, T. 1983.Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  23. Motoki, S., H. Kitazawa, T. Maeda, T. Suzuki, H. Chiji, E. Nishihara, and Y.Shinohara. 2012. Effects of various asparagus production methods on rutin and protodioscin contents in spears and cladophylls. Biosci. Biotechnol. Biochem. 76: 1047-1050. https://doi.org/10.1271/bbb.120143
  24. Na, G.M., H.S. Han, S.H. Ye, and H.K. Kim. 2004. Physiological activity of medicinal plant extracts. Korean J. Food Preserv. 11:388-393.
  25. Normington, K.W., I. Baker, M. Molina, J.S. Wishnok, S.R. Tannenbaum, and S. Puju. 1986. Characterization of a nitrite scavenger, 3-hydroxy-2-pyranone, from Chinese wild plum juice. J. Agric. Food Chem. 34:215-217. https://doi.org/10.1021/jf00068a015
  26. Swann, P.F. 1975. The toxicology of nitrate, nitrite and N-nitroso compounds. J. Sci. Food Agric. 26:1761-1770. https://doi.org/10.1002/jsfa.2740261119
  27. Robb, A.R. 1984. Physiology of asparagus (Asparagus officinalis) as related to the production of the crop. N. Z. J. Exp. Agric. 12:251-260.
  28. Rodriguez, R., S. Jaramillo, G. Rodriguez, J.A. Espejo, R. Guillen, J. Fernandez-Bolanos, A. Heredia, and A. Jimenez. 2005. Antioxidant activity of ethanolic extracts from several asparagus cultivars. J. Agric. Food Chem. 53:5212-5217. https://doi.org/10.1021/jf050338i
  29. Seong, K.C., J.S. Lee, S.G. Lee, and B.C. Yoo. 2001. Comparison of growth characteristics by varieties and effects of rain shelter and mulching on the production of asparagus (Asparagus officinalis L.). J. Bio-Environ. Control 10:187-196.
  30. Shao, Y., C.K. Chin, C.T. Ho, W. Ma, S.A. Garrison, and M.T. Huang. 1996. Anti-tumor activity of the crude saponins obtained from asparagus. Cancer Lett. 104:31-36. https://doi.org/10.1016/0304-3835(96)04233-4
  31. Shou, S., G. Lu, and X. Huang. 2007. Seasonal variations in nutritional components of green asparagus using the mother fern cultivation. Sci. Hortic. 112:251-257. https://doi.org/10.1016/j.scienta.2006.12.048
  32. Sinton, S.M. and D.R. Wilson. 1999. Comparative performance of male and female plants during the annual growth cycle of a dioecious asparagus cultivar. Acta Hortic. 479:347-353.
  33. Sun, T., J.R. Powers, and J. Tang. 2007. Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chem. 105:101-106. https://doi.org/10.1016/j.foodchem.2007.03.048
  34. Tian, Q., E.G. Miller, H, Ahmad, L. Tang, and B.S. Patil. 2001. Differential inhibition of human cancer cell proliferation by citrus limonoids. Nutr. Cancer 40:180-184. https://doi.org/10.1207/S15327914NC402_15
  35. Wang, M., Y. Tadmor, Q.L. Wu, C.K. Chin, S.A. Garrison, and J.E. Simon. 2003. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food Chem. 51:6132-6136. https://doi.org/10.1021/jf0344587
  36. Wilson, D.R., S.M. Sinton, and C.E. Wright. 1999. Influence of time of spear harvest on root system resources during the annual growth cycle of asparagus. Acta Hortic. 479:313-319.
  37. Woolley, D.J., E. Daningsih, and M. Nichols. 2008. Bud population dynamics and productivity of asparagus. Acta Hortic. 776:429-433.

Cited by

  1. Comparison of Plant Growth Characteristics and Biological Activities of Four Asparagus Cultivars by Cultural Method vol.29, pp.4, 2016, https://doi.org/10.7732/kjpr.2016.29.4.495
  2. 시설재배 아스파라거스 중 살충제 dinotefuran의 잔류특성 vol.19, pp.6, 2018, https://doi.org/10.5762/kais.2018.19.6.375
  3. 아스파라거스를 이용한 전통장류의 항산화 효과 vol.49, pp.1, 2021, https://doi.org/10.48022/mbl.2008.08006