DOI QR코드

DOI QR Code

Review on the Recent PM2.5 Studies in China

최근 중국의 초미세먼지 오염 연구 동향

  • Kim, Yumi (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Kim, Jin Young (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Lee, Seung-Bok (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Moon, Kil-Choo (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Bae, Gwi-Nam (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
  • 김유미 (한국과학기술연구원 환경복지연구단) ;
  • 김진영 (한국과학기술연구원 환경복지연구단) ;
  • 이승복 (한국과학기술연구원 환경복지연구단) ;
  • 문길주 (한국과학기술연구원 환경복지연구단) ;
  • 배귀남 (한국과학기술연구원 환경복지연구단)
  • Received : 2015.07.31
  • Accepted : 2015.10.07
  • Published : 2015.10.31

Abstract

The Korea Ministry of Environment has established an air quality standard for $PM_{2.5}$ in 2012 and it is effective from January 2015. In this study, we review various aspects of $PM_{2.5}$ in China, including its measurement, modeling, source apportionment, and health effect, and suggest future research directions for $PM_{2.5}$ studies in Korea. Measurements studies for $PM_{2.5}$ have examined organic marker compounds and $^{14}C$ as well as inorganic aerosols for distinguishing sources. Modeling results supported that the control of $PM_{2.5}$ pollution in big city needs effective cooperation between city and its surrounding regions. The major $PM_{2.5}$ sources in China have been identified to be secondary sulfur, motor vehicle emissions, coal combustion, dust, biomass burning, and industrial sources, however, they have seasonal dependency. Especially, the severe haze pollution event during January 2013 over eastern and northern China was driven to a large extent by secondary aerosol formation. Short-term exposure to $PM_{2.5}$ is strongly associated with the increased risk of morbidity and mortality from cardiovascular and respiratory diseases, as well as total non-accidental mortality. Considered previous $PM_{2.5}$ studies in China, analysis of specific organic species using online measurement, chamber experiment for secondary aerosol formation mechanism, and development of parameterizing this process in the model are needed to elucidate factors governing the abundance and composition of $PM_{2.5}$ in Korea.

Keywords

References

  1. Che, H., X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, and E. Cuevas-Agullo (2014) Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on groundbased sunphotometer measurements, Atmos. Chem. Phys., 14(4), 2125-2138. https://doi.org/10.5194/acp-14-2125-2014
  2. Chen, R., Y. Li, Y. Ma, G. Pan, G. Zeng, X. Xu, B. Chen, and H. Kan (2011) Coarse particles and mortality in three Chinese cities: the China Air Pollution and Health Effects Study (CAPES), Sci. Total Environ., 409(23), 4934-4938. https://doi.org/10.1016/j.scitotenv.2011.08.058
  3. Cheng, Z., J. Jiang, O. Fajardo, S. Wang, and J. Hao (2013) Characteristics and health impacts of particulate matter pollution in China (2001-2011), Atmos. Environ., 65, 186-194. https://doi.org/10.1016/j.atmosenv.2012.10.022
  4. Dai, H., W. Song, X. Gao, L. Chen, and M. Hu (2004) Study on relationship between ambient PM10, PM2.5 pollution and daily mortality in a district in Shanghai, J. Hyg. Res., 33(3), 293-297.
  5. Deutsche Bank Market Research (2013) 'Big Bang Measures to Fight Air Pollution'. 1 March 2013. http://www.fullermoney.com/content/2013-03-01/Deutsche_ChinaStrategy28Feb2013.pdf
  6. Gao, B., H. Guo, X.-M. Wang, X.-Y. Zhao, Z.-H. Ling, Z. Zhang, and T.-Y. Liu (2013) Tracer-based source apportionment of polycyclic aromatic hydrocarbons in $PM_{2.5}$ in Guangzhou, southern China, using positive matrix factorization (PMF), Environ. Sci. Pollut. Res., 20(4), 2398-2409. https://doi.org/10.1007/s11356-012-1129-0
  7. Gao, L., R. Zhang, Z. Han, C. Fu, P. Yan, T. Wang, S. Hong, and L. Jiao (2014a) A modeling study of a typical winter $PM_{2.5}$ pollution episode in a city in eastern China, Aerosol Air Qual. Res., 14(1), 311-322.
  8. Gao, Y., C. Zhao, X. Liu, M. Zhang, and L.R. Leung (2014b) WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia, Atmos. Environ., 92, 250-266. https://doi.org/10.1016/j.atmosenv.2014.04.038
  9. Geng, F., J. Hua, Z. Mu, L. Peng, X. Xu, R. Chen, and H. Kan (2013) Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city, Environ. Res., 120, 27-32. https://doi.org/10.1016/j.envres.2012.08.007
  10. He, Z., Y. Kim, K. Ogunjobi, and C. Hong (2003) Characteristics of $PM_{2.5}$ species and long-range transport of air masses at Taean background station, South Korea, Atmos. Environ., 37, 219-230. https://doi.org/10.1016/S1352-2310(02)00834-8
  11. Huang, K., G. Zhuang, J.S. Fu, Q. Wang, T. Liu, R. Zhang, Y. Jiang, C. Deng, Q. Fu, and N. Hsu (2012a) Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai, Atmos. Chem. Phys., 12, 105-124. https://doi.org/10.5194/acp-12-105-2012
  12. Huang, K., G. Zhuang, Q. Wang, J. Fu, Y. Lin, T. Liu, L. Han, and C. Deng (2014a) Extreme haze pollution in Beijing during January 2013: chemical characteristics, formation mechanism and role of fog processing, Atmos. Chem. Phys. Discuss., 14(6), 7517-7556. https://doi.org/10.5194/acpd-14-7517-2014
  13. Huang, R.-J., Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, and F. Canonaco (2014b) High secondary aerosol contribution to particulate pollution during haze events in China, Nat., 514(7521), 218-222. https://doi.org/10.1038/nature13774
  14. Huang, W., J. Cao, Y. Tao, L. Dai, S.-E. Lu, B. Hou, Z. Wang, and T. Zhu (2012b) Seasonal variation of chemical species associated with short-term mortality effects of $PM_{2.5}$ in Xi'an, a central city in China, Am. J. Epidemiol., 175, 556-566. https://doi.org/10.1093/aje/kwr342
  15. Huang, W., J. Tan, H. Kan, N. Zhao, W. Song, G. Song, G. Chen, L. Jiang, C. Jiang, and R. Chen (2009) Visibility, air quality and daily mortality in Shanghai, China, Sci. Total Environ., 407(10), 3295-3300. https://doi.org/10.1016/j.scitotenv.2009.02.019
  16. Jiang, J., W. Zhou, Z. Cheng, S. Wang, K. He, and J. Hao (2014) Particulate matter distributions in China during a winter period with frequent pollution episodes (January 2013), Aerosol Air Qual. Res., DOI 10.429/aaqr.2014.04.0070.
  17. Kim, B.M. (2013) Development of a new SMP model satisfying all known physical constraints in environmental application, Chemom. Intell. Lab. Syst., 121, 57-65. https://doi.org/10.1016/j.chemolab.2012.11.020
  18. Lang, J., S. Cheng, J. Li, D. Chen, Y. Zhou, X. Wei, L. Han, and H. Wang (2013) A monitoring and modeling study to investigate regional transport and characteristics of $PM_{2.5}$ pollution, Aerosol Air Qual. Res., 13(3), 943-956.
  19. Lee, J.H., Y.P. Kim, K.-C. Moon, H.-K. Kim, and C.B. Lee (2001) Fine particle measurements at two background sites in Korea between 1996 and 1997, Atmos. Environ., 35, 635-643. https://doi.org/10.1016/S1352-2310(00)00378-2
  20. Li, J., W. Yang, Z. Wang, H. Chen, B. Hu, J. Li, Y. Sun, and Y. Huang (2014) A modeling study of source-receptor relationships in atmospheric particulate matter over Northeast Asia, Atmos. Environ., 91, 40-51. https://doi.org/10.1016/j.atmosenv.2014.03.027
  21. Liu, J., J. Li, Y. Zhang, D. Liu, P. Ding, C. Shen, K. Shen, Q. He, X. Ding, and X. Wang (2014a) Source apportionment using radiocarbon and organic tracers for $PM_{2.5}$ carbonaceous aerosols in Guangzhou, South China: Contrasting local- and regional-scale haze events, Environ. Sci. Technol., 48(20), 12002-12011. https://doi.org/10.1021/es503102w
  22. Liu, Z., B. Hu, L. Wang, F. Wu, W. Gao, and Y. Wang (2014b) Seasonal and diurnal variation in particulate matter ($PM_{10}$ and $PM_{2.5}$) at an urban site of Beijing: analyses from a 9-year study, Environ. Sci. Pollut. Res., DOI 10.1007/s11356-014-3347-0.
  23. Ma, Y., R. Chen, G. Pan, X. Xu, W. Song, B. Chen, and H. Kan (2011) Fine particulate air pollution and daily mortality in Shenyang, China, Sci. Total Environ., 409(13), 2473-2477. https://doi.org/10.1016/j.scitotenv.2011.03.017
  24. Ma, Z., X. Hu, L. Huang, J. Bi, and Y. Liu (2014) Estimating ground-level $PM_{2.5}$ in China using satellite remote sensing, Environ. Sci. Technol., 48, 7436-7444. https://doi.org/10.1021/es5009399
  25. Pui, D.Y., S.-C. Chen, and Z. Zuo (2014) $PM_{2.5}$ in China: Measurements, sources, visibility and health effects, and mitigation, Partic., 13, 1-26. https://doi.org/10.1016/j.partic.2013.11.001
  26. Shen, Z., J. Cao, R. Arimoto, Z. Han, R. Zhang, Y. Han, S. Liu, T. Okuda, S. Nakao, and S. Tanaka (2009) Ionic composition of TSP and $PM_{2.5}$ during dust storms and air pollution episodes at Xi'an, China, Atmos. Environ., 43(18), 2911-2918. https://doi.org/10.1016/j.atmosenv.2009.03.005
  27. Sun, Y., G. Zhuang, A. Tang, Y. Wang, and Z. An (2006) Chemical characteristics of $PM_{2.5}$ and $PM_{10}$ in haze-fog episodes in Beijing, Environ. Sci. Technol., 40(10), 3148-3155. https://doi.org/10.1021/es051533g
  28. Tan, J., S. Guo, Y. Ma, J. Duan, Y. Cheng, K. He, and F. Yang (2011) Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China, Atmos. Res., 102(1), 91-98. https://doi.org/10.1016/j.atmosres.2011.06.012
  29. The National Academy of Engineering of Korea (2014) Construction of International Collaboration Network against $PM_{2.5}$ Pollution in East Asia, Report No. 14-01-04.
  30. Wang, H., J. An, L. Shen, B. Zhu, C. Pan, Z. Liu, X. Liu, Q. Duan, X. Liu, and Y. Wang (2014a) Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China, Sci. Total Environ., 490, 501-508. https://doi.org/10.1016/j.scitotenv.2014.05.009
  31. Wang, H., J. Xu, M. Zhang, Y. Yang, X. Shen, Y. Wang, D. Chen, and J. Guo (2014b) A study of the meteorological causes of a prolonged and severe haze episode in January 2013 over central-eastern China, Atmos. Environ., 98, 146-157. https://doi.org/10.1016/j.atmosenv.2014.08.053
  32. Wang, J.-F., M.-G. Hu, C.-D. Xu, G. Christakos, and Y. Zhao (2013a) Estimation of citywide air pollution in Beijing, PLoS ONE, 8(1), e53400. DOI 10.1371/journal.pone.0053400
  33. Wang, J., Z. Hu, Y. Chen, Z. Chen, and S. Xu (2013b) Contamination characteristics and possible sources of $PM_{10}$ and $PM_{2.5}$ in different functional areas of Shanghai, China, Atmos. Environ., 68, 221-229. https://doi.org/10.1016/j.atmosenv.2012.10.070
  34. Wang, Y., Q. Zhang, J. Jiang, W. Zhou, B. Wang, K. He, F. Duan, Q. Zhang, S. Philip, and Y. Xie (2014c) Enhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current models, J. Geophys. Res.: Atmos., 119(17), 10425-10440. https://doi.org/10.1002/2013JD021426
  35. Xiao, Z.-M., Y.-F. Zhang, S.-M. Hong, X.-H. Bi, L. Jiao, Y.-C. Feng, and Y.-Q. Wang (2011) Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China, Aerosol Air Qual. Res., 11(7), 873-882.
  36. Xu, D., M. Dan, Y. Song, Z. Chai, and G. Zhuang (2005) Concentration characteristics of extractable organohalogens in $PM_{2.5}$ and $PM_{10}$ in Beijing, China, Atmos. Environ., 39(22), 4119-4128. https://doi.org/10.1016/j.atmosenv.2005.03.030
  37. Yang, C., X. Peng, W. Huang, R. Chen, Z. Xu, B. Chen, and H. Kan (2012) A time-stratified case-crossover study of fine particulate matter air pollution and mortality in Guangzhou, China, Int. Arch. Occup. Environ. Health, 85(5), 579-585. https://doi.org/10.1007/s00420-011-0707-7
  38. Ying, Q., L. Wu, and H. Zhang (2014) Local and inter-regional contributions to $PM_{2.5}$ nitrate and sulfate in China, Atmos. Environ., 94, 582-592. https://doi.org/10.1016/j.atmosenv.2014.05.078
  39. Yu, L., G. Wang, R. Zhang, L. Zhang, Y. Song, B. Wu, X. Li, K. An, and J. Chu (2013) Characterization and source apportionment of $PM_{2.5}$ in an urban environment in Beijing, Aerosol Air Qual. Res., 13(2), 574-583.
  40. Zhang, F., H.-R. Cheng, Z.-W. Wang, X.-P. Lv, Z.-M. Zhu, G. Zhang, and X.-M. Wang (2014) Fine particles ($PM_{2.5}$) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events, Atmos. Environ., 86, 193-202. https://doi.org/10.1016/j.atmosenv.2013.12.008
  41. Zhang, F., J. Chen, T. Qiu, L. Yin, X. Chen, and J. Yu (2013a) Pollution characteristics of $PM_{2.5}$ during a typical haze episode in Xiamen, China, Atmos. Clim. Sci., 3, 427-439.
  42. Zhang, R., J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. Lee, L. Zhu, Z. Chen, and Y. Zhao (2013b) Chemical characterization and source apportionment of $PM_{2.5}$ in Beijing: seasonal perspective, Atmos. Chem. Phys., 13(14), 7053-7074. https://doi.org/10.5194/acp-13-7053-2013
  43. Zhao, P., F. Dong, D. He, X. Zhao, X. Zhang, W. Zhang, Q. Yao, and H. Liu (2013a) Characteristics of concentrations and chemical compositions for $PM_{2.5}$ in the region of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13(9), 4631-4644. https://doi.org/10.5194/acp-13-4631-2013
  44. Zhao, P., F. Dong, Y. Yang, D. He, X. Zhao, W. Zhang, Q. Yao, and H. Liu (2013b) Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China, Atmos. Environ., 71, 389-398. https://doi.org/10.1016/j.atmosenv.2013.02.010
  45. Zhao, X., X. Zhang, X. Xu, J. Xu, W. Meng, and W. Pu (2009) Seasonal and diurnal variations of ambient $PM_{2.5}$ concentration in urban and rural environments in Beijing, Atmos. Environ., 43(18), 2893-2900. https://doi.org/10.1016/j.atmosenv.2009.03.009

Cited by

  1. Review of Recent Smog Chamber Studies for Secondary Organic Aerosol vol.32, pp.2, 2016, https://doi.org/10.5572/KOSAE.2016.32.2.131
  2. Review on the Current Status and Policy on PM2.5 in China vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.373