DOI QR코드

DOI QR Code

Comparison of Physicochemical Properties and Antioxidant Activities between Lentinula edodes and New Cultivar Lentinula edodes GNA01

표고버섯(Lentinula edodes) 및 표고버섯 신품종 이슬송이버섯(Lentinula edodes GNA01)의 이화학적 특성 및 항산화 활성 비교

  • Jang, Hye-Lim (Food Analysis Research Center, Suwon Women's University) ;
  • Lee, Jong-Hun (Food Analysis Research Center, Suwon Women's University) ;
  • Hwang, Myung-Jin (Food Analysis Research Center, Suwon Women's University) ;
  • Choi, Youngmin (Functional Food & Nutrition Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Haengran (Functional Food & Nutrition Division, National Academy of Agricultural Science, RDA) ;
  • Hwang, Jinbong (Department of Food Analysis, Korea Food Research Institute) ;
  • Nam, Jin-Sik (Food Analysis Research Center, Suwon Women's University)
  • 장혜림 (수원여자대학교 식품분석연구센터) ;
  • 이종헌 (수원여자대학교 식품분석연구센터) ;
  • 황명진 (수원여자대학교 식품분석연구센터) ;
  • 최용민 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김행란 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 황진봉 (한국식품연구원 식품분석센터) ;
  • 남진식 (수원여자대학교 식품분석연구센터)
  • Received : 2015.09.07
  • Accepted : 2015.09.25
  • Published : 2015.10.31

Abstract

The new cultivar Lentinula edodes, which is named 'Lentinula edodes GNA01', was bred by mating strains isolated from 'L26' and 'Kyoungwon9015' obtained from Sammyungjin Research Institute, Fujian, China. L. edodes GNA01 does not have stipes like L. edodes, although it generally has a similar spherical shape. Moisture and crude protein contents of L. edodes GNA01 were lower than those of L. edodes. Meanwhile, L. edodes GNA01 contained higher levels of crude ash, crude lipid, crude fiber, and carbohydrates than L. edodes. The ${\beta}$-carotene content ($19.05{\mu}g/100g$) of L. edodes GNA01 was about three times higher than that of L. edodes. In addition, vitamin D content ($118.53{\mu}g/100g$) of L. edodes GNA01 was more than twice that of L. edodes. L. edodes GNA01 was a good source of mineral elements, with K and Mg contents of 2,277.50 mg/100 g and 203.15 mg/100 g, respectively. The major fatty acids of L. edodes GNA01 were C16:0 and C18:2, and L. edodes GNA01 had the highest linoleic acid (C18:2) content of 1,087.66 mg/100 g. Total phenol content of L. edodes GNA01 was 12.52 mg GAE/g, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and ferric reducing antioxidant power (FRAP) values of L. edodes GNA01 were lower than those of L. edodes at all concentrations. However, DPPH radical scavenging activities and FRAP values of L. edodes GNA01 were above 80% and 0.9 at a concentration of 10 mg/mL, respectively.

본 연구에서는 관련 연구가 미흡하고 널리 알려져 있지 않아 수요가 부족한 이슬송이버섯의 보급 확대 및 수요 창출을 위한 기초자료를 제공하고자 이슬송이버섯의 이화학적 특성 및 항산화 활성을 조사하였다. 이슬송이버섯은 중국 복건성 삼명진연구소 L26과 경원9015를 모균주로 하여 교배된 신품종 표고버섯으로 표고버섯과 달리 갓과 자루의 구별이 없는 구형을 띠고 있다. 이슬송이버섯의 일반성분을 분석한 결과 수분 및 조단백 함량은 표고버섯보다 낮았으나 조회분, 조지방, 조섬유 및 탄수화물 함량은 표고버섯보다 높았다. 이슬송이버섯의 베타카로틴 함량은 $19.05{\mu}g/100g$으로 표고버섯의 베타카로틴 함량보다 약 3배 높았으며, 비타민 D 함량 또한 $118.53{\mu}g/100g$으로 표고버섯의 약 2배로 확인되었다. 주요 무기질은 K으로 측정되었으며, Mg 함량이 표고버섯의 약 2배로 측정되어 유의적인 차이를 보였다. 이슬송이버섯 및 표고버섯의 지방산 함량과 조성은 모두 불포화지방산이 대부분을 차지하였으며, 특히 linoleic acid가 가장 큰 비중을 차지하고 있었다. 이슬송이버섯의 총 페놀 함량은 표고버섯보다 낮았으며, 1,1-diphenyl-2-picrylhydrazyl picrylhydrazyl(DPPH) radical 소거 활성과 ferric reducing antioxidant power(FRAP) 또한 모든 농도에서 표고버섯보다 낮았다. 그러나 이슬송이버섯은 10 mg/mL 농도에서 80% 이상의 DPPH radical 소거 활성을 보였으며, FRAP 또한 1에 가까운 환원력을 나타내었다. 이상의 결과로 이슬송이버섯은 비록 항산화 활성은 표고버섯에 비해 낮게 나타났으나 베타카로틴 및 비타민 D 함량은 표고버섯보다 높은 것으로 확인되었다. 이에 따라 항산화 활성을 높일 수 있는 방안에 대해 추후 연구가 이루어진다면 더욱 훌륭한 식품소재가 될 것으로 판단된다.

Keywords

References

  1. Um S, Jin G, Park KW, Yu Y, Park KM. 2010. Physiological activity and nutritional composition of Pleurotus species. Korean J Food Sci Technol 42: 90-96.
  2. Kang MY, Kim S, Yun HJ, Nam SH. 2004. Antioxidative activity of the extracts from browned oak mushroom (Lentinus edodes) with unmarketable quality. Korean J Food Sci Technol 36: 648-654.
  3. Seo SY, Ahn MS, Choi SR, Song EJ, Choi MK, Kim YS. 2011. Analysis of nutritional compositions and biological activity of Agrocybe aegerita. J Mushroom Sci Prod 9: 116-122.
  4. Jung EB, Jo JH, Cho SM. 2008. Nutritional component and anticancer of various extracts from Haesongi mushroom (Hypsizigus marmoreus). J Korean Soc Food Sci Nutr 37: 1395-1400. https://doi.org/10.3746/jkfn.2008.37.11.1395
  5. Ding JL, Shin HJ, Cha WS. 2006. Anlaysis of amino acids, vitamins and minerals of fruiting body of Fomitopsis pinicola. J Life Sci 16: 1123-1126. https://doi.org/10.5352/JLS.2006.16.7.1123
  6. Kim H, Ham I, Lee K, Lee B, Kim YG, Yang E, Yoo Y, Kim H. 2011. Characteristics of a new button mushroom variety 'Dahyang'. J Mushroom Sci Prod 9: 17-21.
  7. Kim Y. 2011. Novel strain of Lentinula edodes GNA01. US Patent 13,994,696.
  8. AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  9. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41. https://doi.org/10.1021/jf950190a
  10. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  11. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  12. Song H, Moon GI, Moon YH, Jung IC. 2000. Quality and storage stability of hamburger during low temperature storage. Korean J Food Sci Ani Resour 20: 72-78.
  13. Kim H, Ahn M, Kim G, Kang M. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol 38: 799-804.
  14. Shon MY, Seo KI, Choi SY, Sung NJ, Lee SW, Park SK. 2006. Chemical compounds and biological activity of Phellinus baumii. J Korean Soc Food Sci Nutr 35: 524-529. https://doi.org/10.3746/jkfn.2006.35.5.524
  15. National Academy of Agricultural Science. 2011. Food Composition Table. 8th ed. Rural Development Administration, Suwon, Korea. p 198.
  16. Lee SK, Yoo YJ, Kim CS. 1989. Studies on the chemical components in Ganoderma lucidum. Korean J Food Sci Technol 21: 890-894.
  17. Kim JY, Park SR, Shin JA, Chun JY, Lee J, Yeon JY, Lee WY, Lee KT. 2013. ${beta}$-Carotene and retinol contents in Bap, Guk (Tang) and Jjigae of eat-out Korean foods. J Korean Soc Food Sci Nutr 42: 1958-1965. https://doi.org/10.3746/jkfn.2013.42.12.1958
  18. Raja R, Hemaiswarya S, Rengasamy R. 2007. Exploitation of Dunaliella for ${beta}$-carotene production. Appl Microbiol Biotechnol 74: 517-523. https://doi.org/10.1007/s00253-006-0777-8
  19. Robaszkiewicz A, Bartosz G, Lawrynowicz M, Soszynski M. 2010. The role of polyphenols, ${\beta}$-carotene, and lycopene in the antioxidative action of the extracts of dried, edible mushrooms. J Nutr Metab 1-9.
  20. Mau JL, Chao GR, Wu KT. 2001. Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem 49: 5461-5467. https://doi.org/10.1021/jf010637h
  21. Mau JL, Lin HC, Chen CC. 2002. Antioxidant properties of several medicinal mushrooms. J Agric Food Chem 50: 6072-6077. https://doi.org/10.1021/jf0201273
  22. Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49: 2343-2348. https://doi.org/10.1021/jf001525d
  23. Takamura K, Hoshino H, Sugahara T, Amano H. 1991. Determination of vitamin D2 in shiitake mushroom (Lentinus edodes) by high-performance liquid chromatography. J Chromatogr A 545: 201-204. https://doi.org/10.1016/S0021-9673(01)88709-4
  24. Holick MF. 2009. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19: 73-78. https://doi.org/10.1016/j.annepidem.2007.12.001
  25. Ford ES, Ajani UA, McGuire LC, Liu S. 2005. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care 28: 1228-1230. https://doi.org/10.2337/diacare.28.5.1228
  26. May HT, Bair TL, Lappe DL, Anderson JL, Horne BD, Carlquist JF, Muhlestein JB. 2010. Association of vitamin D levels with incident depression among a general cardiovascular population. Am Heart J 159: 1037-1043. https://doi.org/10.1016/j.ahj.2010.03.017
  27. Cho SK, Koo S, Park K. 2014. Vitamin D and depression. J Korean Soc Food Sci Nutr 43: 1467-1476. https://doi.org/10.3746/jkfn.2014.43.10.1467
  28. Hong KH, Kim BY, Kim HK. 2004. Analysis of nutritional components in Pleurotus ferulea. Korean J Food Sci Technol 36: 563-567.
  29. Hashiguchi M, Itoh S, Tsuyuki H. 1984. Lipids in cap and stalk of shiitake mushroom studies on the lipids of shiitake. J Jap Soc Food Sci Technol 31: 436-442. https://doi.org/10.3136/nskkk1962.31.7_436
  30. Rew YH, Lee SH, Jo WS, Yoon JT. 2000. Changes of fatty acid composition by various developmental stage and fruit body section in Pleurotus ostreatus. Korean J Mycol 28: 109-111.
  31. Cho DB, Hyun KH, Choi JH, Na KC, Seo JS, Kang SK, Kim YD. 2002. Chemical compositions of Lentinula in growth stage -A study on application plan of Lentinula I-. Korean J Plant Res 15: 128-134.
  32. Kozlowska H, Rotkiewicz DA, Zadernowski R, Sosulski FW. 1983. Phenolic acids in rapeseed and mustard. J Amer Oil Chem Soc 60: 1119-1123. https://doi.org/10.1007/BF02671339
  33. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47: 3954-3962. https://doi.org/10.1021/jf990146l
  34. Mattila P, Hellstrom J. 2007. Phenolic acids in potatoes, vegetables, and some of their products. J Food Comp Anal 20: 152-160. https://doi.org/10.1016/j.jfca.2006.05.007
  35. Baek G, Jeong H, Kim H, Yoon T, Suh H, Yu K. 2012. Pharmacological activity of chaga mushroom on extraction conditions and immunostimulating polysaccharide. J Korean Soc Food Sci Nutr 41: 1378-1387. https://doi.org/10.3746/jkfn.2012.41.10.1378
  36. Koleva II, van Beek TA, Linssen JP, de Groot A, Evstatieva LN. 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13: 8-17. https://doi.org/10.1002/pca.611
  37. Gülçin I, Alici HA, Cesur M. 2005. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull 53: 281-285. https://doi.org/10.1248/cpb.53.281
  38. Kim HK, Yang ES, Park GM, Kim GH, Kim HH, Lee KS. 2011. Chemical components, antioxidant activity, and ${\alpha}$- glucoamylase inhibitory activity of a new mushroom variety 'Dahyang'. J Korean Soc Food Sci Nutr 40: 1179-1183. https://doi.org/10.3746/jkfn.2011.40.8.1179
  39. Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaku K, Yamane Y. 2004. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J Agric Food Chem 52: 2391-2396. https://doi.org/10.1021/jf035372g
  40. Cho HS, Lee HJ, Lee SJ, Shin JH, Lee HU, Sung NJ. 2008. Antioxidative effects of Pleurotus eryngii and its by-products. J Life Sci 18: 1360-1368. https://doi.org/10.5352/JLS.2008.18.10.1360
  41. Nguyen TK, Shin DB, Lee KR, Shin PG, Cheong JC, Yoo YB, Lee MW, Jin GH, Kim HY, Im KH, Lee TS. 2013. Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. J Mushroom Sci Prod 11: 269-277. https://doi.org/10.14480/JM.2013.11.4.269
  42. Mau J, Chang C, Huang S, Chen C. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87: 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  43. Maksimovic Z, Malencic D, Kovacevic N. 2005. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour Technol 96: 873-877. https://doi.org/10.1016/j.biortech.2004.09.006

Cited by

  1. Quality Changes of Low Temperature Storage and Storage Period of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) and Button Mushroom (Agaricus bisporus Sing.) vol.33, pp.2, 2017, https://doi.org/10.9724/kfcs.2017.33.2.174
  2. Comparison of Nutritional Compositions between Amaranth Baby-Leaves Cultivated in Korea vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.980
  3. Quality Changes of Lentinula edodes GNA01 Mushroom by Choline Dioxide Gas Treatment during Storage vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.499
  4. Quality characteristics of Pleurotus eryngii, Lentinus edodes GNA01 and Grifola frondosa as affected by different drying methods vol.25, pp.2, 2018, https://doi.org/10.11002/kjfp.2018.25.2.181
  5. 추출용매에 따른 이슬송이버섯(Lentinula edodes GNA01) 추출물의 항산화 활성 vol.30, pp.1, 2017, https://doi.org/10.9799/ksfan.2017.30.1.051
  6. 표고버섯 분말을 첨가한 쌀 쿠키의 품질 특성 및 항산화 활성 vol.24, pp.3, 2017, https://doi.org/10.11002/kjfp.2017.24.3.421
  7. 표고버섯가루 분말 첨가 식빵의 일반성분 및 품질 특성 vol.30, pp.6, 2015, https://doi.org/10.9799/ksfan.2017.30.6.1319
  8. Quality Characteristics and Antioxidant Activities of Yanggaeng Added with Lentinus edodes Powder vol.30, pp.2, 2015, https://doi.org/10.17495/easdl.2020.4.30.2.162
  9. 액체종균에 의한 표고의 수확 주기에 따른 이화학적 특성 및 항산화 활성 vol.18, pp.3, 2015, https://doi.org/10.14480/jm.2020.18.3.234