DOI QR코드

DOI QR Code

Relationship between Incidence of Endometritis and Metabolic Status during Peri- and Postpartum Periods in Dairy Cows

젖소의 자궁내막염 발생과 분만 전·후 대사 상태와의 상관관계

  • Jeong, Jae-Kwan (College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, In-Soo (College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Hyun-Gu (College of Veterinary Medicine, Chungbuk National University) ;
  • Jung, Young-Hun (National Institute of Animal Science, RDA) ;
  • Hur, Tai-Young (National Institute of Animal Science, RDA) ;
  • Kim, Ill-Hwa (College of Veterinary Medicine, Chungbuk National University)
  • Accepted : 2015.10.15
  • Published : 2015.10.30

Abstract

This study compared blood metabolites during peri- and postpartum periods among cows with clinical or subclinical endometritis and cows without endometritis. Blood samples from 207 Holstein dairy cows were collected at 4 weeks prepartum, just after calving, and at 1, 2, 4, and 6 weeks postpartum to measure serum concentrations of calcium, magnesium, non-esterified fatty acids (NEFAs), total cholesterol, albumin, urea nitrogen, ${\beta}$-hydroxybutyrate (BHBA), aspartate aminotransferase (AST), ${\gamma}$-glutamyltransferase, glucose, and phosphorus. Clinical endometritis was diagnosed by the observation of vaginal discharge (> 50% pus) and subclinical endometritis was diagnosed by the evaluation of uterine cytology (> 18% neutrophils) at 4 weeks postpartum. Cows were divided into three groups based on the presence or absence of clinical or subclinical endometritis: the control group (n = 104), the clinical endometritis group (n = 66), and the subclinical endometritis group (n = 37). Calcium and magnesium concentrations were lower in the clinical endometritis group than in the control and subclinical endometritis groups throughout the study period (p < 0.05 to 0.0001), whereas the NEFAs concentration was higher in the clinical endometritis group than in the control group throughout the study period (p < 0.01). The total cholesterol concentration was lower in the clinical endometritis group than in the control and subclinical endometritis groups throughout the pre- and postpartum periods (p < 0.05 to 0.001). The albumin concentration was lower in the clinical endometritis group than in the control and subclinical endometritis groups during the postpartum period (p < 0.05 to 0.001). The urea nitrogen concentration was lower in the clinical endometritis group than in the control and subclinical endometritis groups at 4 and 6 weeks postpartum (p < 0.01). At 1 week postpartum, the BHBA concentration was higher in the clinical endometritis group than in the control group (p < 0.05), whereas the AST concentration was higher in the clinical endometritis and subclinical endometritis groups than in the control group (p < 0.05). In conclusion, lower serum concentrations of calcium, magnesium, total cholesterol, albumin, and urea nitrogen, but higher concentrations of NEFAs, BHBA, and AST during the postpartum period were associated with the incidence of clinical endometritis, indicating the importance of balanced nutrition during the transition period.

본 연구는 임상형 혹은 준임상형 자궁내막염에 이환된 젖소와 자궁내막염이 발생되지 않은 젖소 사이에 분만 전 후 기간 동안 혈액 대사물질의 농도를 비교하였다. 분만 전 4주, 분만 후, 분만 1, 2, 4, 6주 후 혈액을 채취하였으며, 혈청 분리 후 calcium, magnesium, non-esterified fatty acids (NEFAs), total cholesterol, albumin, urea nitrogen, ${\beta}$-hydroxybutyrate (BHBA), aspartate aminotransferase (AST), ${\gamma}$-glutamyltransferase, glucose 및 phosphorus 농도를 측정하였다. 분만 후 4주에, 임상형 혹은 준임상형 자궁내막염 발생 유무에 따라 대조군(n = 104), 임상형 자궁내막염군(n = 66) 및 준임상형 자궁내막염군(n = 37)으로 구분하였다. Calcium과 magnesium 농도는 실험 전 기간에 걸쳐 임상형 자궁내막염군이 대조군과 준임상형 자궁내막염군에 비해 낮았으나(p < 0.05 to 0.0001), NEFAs 농도는 실험전 기간에 걸쳐 임상형 자궁내막염군이 대조군에 비해 높았다(p < 0.01). Total cholesterol 농도는 분만 전 및 분만 후 기간 중 임상형 자궁내막염군이 대조군과 준임상형 자궁내막염군에 비해 낮았다(p < 0.05 to 0.001). Albumin 농도는 분만 후 기간 동안 임상형 자궁내막염군이 대조군과 준임상형 자궁내막염군에 비해 낮았다(p < 0.05 to 0.001). Urea nitrogen 농도는 분만 후 4주 및 6주에 임상형 자궁내막염군이 대조군과 준임상형 자궁내막염군에 비해 낮았다(p < 0.01). 분만 후 1주에, BHBA 농도는 임상형 자궁내막염군이 대조군에 비해 높았으나(p < 0.01), AST 농도는 임상형 자궁내막염군과 준임상형 자궁내막염군이 대조군에 비해 높았다(p < 0.05). 결론적으로, 분만 후 혈청 calcium, magnesium, total cholesterol, albumin 및 urea nitrogen 농도의 감소와 NEFAs, BHBA 및 AST 농도의 증가가 임상형 자궁내막염의 발생과 관련되었으며, 이것은 전환기 중의 균형 잡힌 영양의 중요성을 제시한다.

Keywords

References

  1. Bell AW, Burhans WS, Overton TR. Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proc Nutr Soc 2000; 59: 119-126. https://doi.org/10.1017/S0029665100000148
  2. Bertoni G, Trevisi E, Han X, Bionaz M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J Dairy Sci 2008; 91: 3300-3310. https://doi.org/10.3168/jds.2008-0995
  3. Bicalho MLS, Lima FS, Ganda EK, Foditsch C, Meira EBS, Machado VS, Teixeira AGV, Oikonomou G, Gilbert RO, Bicalho RC. Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle. J Dairy Sci 2014; 97: 4281-4295. https://doi.org/10.3168/jds.2013-7832
  4. Burke CR, Meier S, McDougall S, Compton C, Mitchell M, Roche JR. Relationships between endometritis and metabolic state during the transition period in a pasturegrazed dairy cows. J Dairy Sci 2010; 93: 5363-5373. https://doi.org/10.3168/jds.2010-3356
  5. Busato A, Faissle D, Kupfer U, Blum JW. Body condition scores in dairy cows: Associations with metabolic and endocrine changes in healthy dairy cows. J Vet Med A Physiol Pathol Clin Med 2002; 49: 455-460. https://doi.org/10.1046/j.1439-0442.2002.00476.x
  6. Dubuc J, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Risk factors for postpartum uterine diseases in dairy cows. J Dairy Sci 2010; 93: 5764-5771. https://doi.org/10.3168/jds.2010-3429
  7. Dubuc J, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Definitions and diagnosis of postpartum endometritis in dairy cows. J Dairy Sci 2010; 93: 5225-5233. https://doi.org/10.3168/jds.2010-3428
  8. Evans ACO, Walsh SW. The physiology of multifactorial problems limiting the establishment of pregnancy in dairy cattle. Reprod Fertil Dev 2012; 24: 233-237. https://doi.org/10.1071/RD11912
  9. Gilbert RO, Shin ST, Guard CL, Erb HN, Frajblat M. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 2005; 64: 1879-1888. https://doi.org/10.1016/j.theriogenology.2005.04.022
  10. Goff JP. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet J 2008; 176: 50-57. https://doi.org/10.1016/j.tvjl.2007.12.020
  11. Gonzalez FD, Muino R, Pereira V, Campos R, Benedito JL. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J Vet Sci 2011; 12: 251-255. https://doi.org/10.4142/jvs.2011.12.3.251
  12. Green MP, Ledgard AM, Berg MC, Peterson AJ, Back PJ. Prevalence and identification of systemic markers of subclinical endometritis in postpartum dairy cows. Proc N Z Soc Anim Prod 2009; 69: 37-42.
  13. Hammon DS, Evjen IM, Dhiman TR, Goff JP, Walters JL. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol 2006; 113: 21-29. https://doi.org/10.1016/j.vetimm.2006.03.022
  14. Herdt TH. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet Clin North Am Food Anim Pract 2000; 16: 215-230. https://doi.org/10.1016/S0749-0720(15)30102-X
  15. Jackson RA, Wills JR, Kendall NR, Green MJ, Murray RD, Dobson H. Energy metabolites in pre- and postpartum dairy cattle as predictors of reproductive disorders. Vet Rec 2011; 168: 562. https://doi.org/10.1136/vr.d1565
  16. Kasimanickam R, Duffield TF, Foster RA, Gartley CJ, Leslie KE, Walton JS, Johnson WH. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004; 62: 9-23. https://doi.org/10.1016/j.theriogenology.2003.03.001
  17. Kim IH, Kang HG. Risk factors for postpartum endometritis and the effect of endometritis on reproductive performance in dairy cows in Korea. J Reprod Dev 2003; 49: 485-491. https://doi.org/10.1262/jrd.49.485
  18. Kim IH, Kang HG, Jeong JK, Hur TY, Jung YH. Inflammatory cytokines concentrations in uterine flush and serum samples from dairy cows with clinical or subclinical endometritis. Theriogenology 2014; 82: 427-432. https://doi.org/10.1016/j.theriogenology.2014.04.022
  19. LeBlanc SJ, Duffield TF, Lesile KE, Bateman KG, Keefe GP, Walton JS, Johnson WH. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J Dairy Sci 2002; 85: 2223-2236. https://doi.org/10.3168/jds.S0022-0302(02)74302-6
  20. Loyi T, Kumar H, Nandi S, Mathapati BS, Patra MK, Pattnaik B. Different expression of pro-inflammatory cytokines in endometrial tissue of buffalos with clinical and subclinical endometritis. Res Vet Sci 2013; 94: 336-340. https://doi.org/10.1016/j.rvsc.2012.09.008
  21. Macrae AI, Whitaker DA, Burrough E, Dowell A, Kelly JM. Use of metabolic profiles for the assessment of dietary adequacy in UK dairy herds. Vet Rec 2006; 159: 655-661. https://doi.org/10.1136/vr.159.20.655
  22. Martinez N, Risco CA, Lima FS, Bisinotto RS, Greco LF, Ribeiro ES, Maunsell F, Calvao K, Santos JEP. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease. J Dairy Sci 2012; 95: 7158-7172. https://doi.org/10.3168/jds.2012-5812
  23. McDougall S, Macaulay R, Compton C. Association between endometritis diagnosis using a novel intravaginal device and reproductive performance in dairy cattle. Anim Reprod Sci 2007; 99: 9-23. https://doi.org/10.1016/j.anireprosci.2006.03.017
  24. Ribeiro ES, Lima FS, Greco LF, Bisinotto RS, Monteiro APA, Favoreto M, Ayres H, Marsola RS, Martinez N, Thatcher WW, Santos JEP. Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates. J Dairy Sci 2013; 96: 5682-5697. https://doi.org/10.3168/jds.2012-6335
  25. Senosy WS, Izaike Y, Osawa T. Influences of metabolic traits on subclinical endometritis at different intervals postpartum in high milking cows. Reprod Domest Anim 2012; 47: 666-674. https://doi.org/10.1111/j.1439-0531.2011.01941.x
  26. Sheldon IM, Noakes DE. Comparison of three treatments for bovine endometritis. Vet Rec 1998; 142: 575-579. https://doi.org/10.1136/vr.142.21.575
  27. Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology 2006; 65: 1516-1530. https://doi.org/10.1016/j.theriogenology.2005.08.021
  28. Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod 2009; 81: 1025-1032. https://doi.org/10.1095/biolreprod.109.077370
  29. Stengarde L, Holtenius K, Emanuelson U, Hultgren J, Niskanen R, Traven M. Blood parameters in Swedish dairy herds with high or low incidence of displaced abomasum or ketosis. Vet J 2011; 190: 124-130. https://doi.org/10.1016/j.tvjl.2010.09.011
  30. Strang BD, Bertics SJ, Grummer RR, Armentano LE. Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes. J Dairy Sci 1998; 81: 728-739. https://doi.org/10.3168/jds.S0022-0302(98)75629-2
  31. Zerbe H, Schneider N, Leipold W. Altered functional and immunophenotypical properties of neutrophilic granulocytes in postpartum cows associated with fatty liver. Theriogenology 2000; 54: 771-786. https://doi.org/10.1016/S0093-691X(00)00389-7