DOI QR코드

DOI QR Code

보정기법 없이 채널 간 오프셋 부정합을 최소화한 2x Interleaved 10비트 120MS/s 파이프라인 SAR ADC

A Non-Calibrated 2x Interleaved 10b 120MS/s Pipeline SAR ADC with Minimized Channel Offset Mismatch

  • 투고 : 2015.06.12
  • 심사 : 2015.09.03
  • 발행 : 2015.09.25

초록

본 논문에서는 특별한 보정기법 없이 채널 간 오프셋 부정합 문제를 최소화한 2채널 time-interleaved (T-I) 구조의 10비트 120MS/s 파이프라인 SAR ADC를 제안한다. 제안하는 ADC는 4비트-7비트 기반의 2단 파이프라인 구조 및 2채널 T-I 구조를 동시에 적용하여 전력소모를 최소화하면서 빠른 변환속도를 구현하였다. 채널 간에 비교기 및 잔류전압 증폭기 등 아날로그 회로를 공유함으로써 일반적인 T-I 구조에서 선형성을 제한하는 채널 간 오프셋 부정합 문제를 추가적인 보정기법 없이 최소화할 뿐만 아니라 전력소모 및 면적을 감소시켰다. 고속 동작을 위해 SAR 로직에는 범용 D 플립플롭 대신 TSPC D 플립플롭을 사용하여 SAR 로직에서의 지연시간을 최소화하면서 사용되는 트랜지스터의 수도 절반 수준으로 줄임으로써 전력소모 및 면적을 최소화하였다. 한편 제안하는 ADC는 기준전압 구동회로를 3가지로 분리하여, 4비트 및 7비트 기반의 SAR 동작, 잔류전압 증폭 등 서로 다른 스위칭 동작으로 인해 발생하는 기준전압 간섭 및 채널 간 이득 부정합 문제를 최소화하였다. 시제품 ADC는 고속 SAR 동작을 위한 높은 주파수의 클록을 온-칩 클록 생성회로를 통해 생성하였으며, 외부에서 duty cycle을 조절할 수 있도록 설계하였다. 시제품 ADC는 45nm CMOS 공정으로 제작되었으며, 측정된 DNL 및 INL은 10비트 해상도에서 각각 최대 0.69LSB, 0.77LSB이며, 120MS/s 동작속도에서 동적 성능은 최대 50.9dB의 SNDR 및 59.7dB의 SFDR을 보여준다. 시제품 ADC의 칩 면적은 $0.36mm^2$이며, 1.1V 전원전압에서 8.8mW의 전력을 소모한다.

This work proposes a 2-channel time-interleaved (T-I) 10b 120MS/s pipeline SAR ADC minimizing offset mismatch between channels without any calibration scheme. The proposed ADC employs a 2-channel SAR and T-I topology based on a 2-step pipeline ADC with 4b and 7b in the first and second stage for high conversion rate and low power consumption. Analog circuits such as comparator and residue amplifier are shared between channels to minimize power consumption, chip area, and offset mismatch which limits the ADC linearity in the conventional T-I architecture, without any calibration scheme. The TSPC D flip-flop with a short propagation delay and a small number of transistors is used in the SAR logic instead of the conventional static D flip-flop to achieve high-speed SAR operation as well as low power consumption and chip area. Three separate reference voltage drivers for 4b SAR, 7b SAR circuits and a single residue amplifier prevent undesirable disturbance among the reference voltages due to each different switching operation and minimize gain mismatch between channels. High-frequency clocks with a controllable duty cycle are generated on chip to eliminate the need of external complicated high-frequency clocks for SAR operation. The prototype ADC in a 45nm CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 0.77LSB, with a maximum SNDR and SFDR of 50.9dB and 59.7dB at 120MS/s, respectively. The proposed ADC occupies an active die area of 0.36mm2 and consumes 8.8mW at a 1.1V supply voltage.

키워드

참고문헌

  1. Y. J. Kim, et al., "A 9.43-ENOB 160MS/s 1.2V 65nm CMOS ADC based on multi-stage amplifiers," in Proc. CICC, Sept. 2009, pp. 271-274.
  2. P. Bogner, F. Kuttner, C. Kropf, T. Hartig, M. Burian, and E. Hermann, "A 14b 100MS/s digitally self-calibrated pipelined ADC in 0.13um CMOS," in ISSCC Dig. Tech Papers, Feb. 2006, pp. 832-841.
  3. M. Yip, and Anantha P. Chandrakasan, "A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1V Power Scalable SAR ADC for Sensor Applications," IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1453-1464, June 2013. https://doi.org/10.1109/JSSC.2013.2254551
  4. E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, "A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP Digital CMOS," in ISSCC Dig. Tech Papers, Feb. 2009, pp. 76-77.
  5. M. Furuta, M. Nozawa., and T. Itakura "A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC Using Single-Ended 1.5-bit/cycle Conversion Technique," IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1360-1370, June 2011. https://doi.org/10.1109/JSSC.2011.2126390
  6. J. Y. Um, et al., "A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 60, no. 11, pp. 2845-2856, Nov. 2013. https://doi.org/10.1109/TCSI.2013.2252475
  7. Y. Zhu, et al., "A 10-bit 100-MS/s Reference Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010. https://doi.org/10.1109/JSSC.2010.2048498
  8. Y. M. Kim, J. S. Park, Y. J. Shin, and S. H. Lee, "An 87 fJ/conversion-step 12 b 10 MS/s SAR ADC using a minimum number of unit capacitors," Analog Integrated Circuits and Signal Processing, vol. 80, no. 1, pp. 49-57, July 2014. https://doi.org/10.1007/s10470-014-0298-9
  9. S. C. Lee, et al., "A 10-bit 400-MS/s 160-mW 0.13-um CMOS dual-channel pipeline ADC without channel mismatch calibration," IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1596-1605, July 2006. https://doi.org/10.1109/JSSC.2006.873862
  10. G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, "A 1-${\mu}$W 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012. https://doi.org/10.1109/JSSC.2012.2217635
  11. Dong-Suk Lee, Myung-Hwan Lee, Yi-Gi Kwon, and Seung-Hoon Lee, "A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems,," Journal of The Institute of Electronics and Information Engineer, Vol.46, SD, NO.3, pp. 75-85, Mar. 2009.
  12. J. I. Kim, B. R. S. Sung, W. Kim, and S. T. Ryu, "A 6-b 4.1-GS/s Flash ADC With Time-Domain Latch Interpolation in 90-nm CMOS," IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1429-1441, June 2013. https://doi.org/10.1109/JSSC.2013.2252516
  13. M. Gustavsson, J. Wilkner, and N. Tan, CMOS Data Converters for Communications. Kluwer Academic Publishers, Boston, 2000.
  14. Seung-Jae Park, Byeong-Woo Koo, and, Seung-Hoon Lee, "A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications," Journal of Institute of Electronics and Information Engineer, Vol.47, SD, NO.8, pp. 56-63, Aug. 2010.
  15. C. C. Liu, et al., "A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13${\mu}$m CMOS process," in Symp. VLSI Circuits Dig. Tech. Papers, June 2009, pp. 236-237.
  16. Hye-Lim Park, Min-Ho Choi, Sang-Pil Nam, Tai-Ji An, and Seung-Hoon Lee, "A mismatch-error minimized four-channel time-interleaved 11 b 150 MS/s pipelined SAR ADC," Analog Integrated Circuits and Signal Processing, vol. 76, no. 1, pp. 1-13, July 2013. https://doi.org/10.1007/s10470-013-0074-2
  17. Sang-Pil Nam, Yong-Min Kim, Dong-Hyun Hwang, Hyo-Jin Kim, Tai-Ji An, Jun-Sang Park, Suk-Hee Cho, Gil-Cho Ahn, and Seung-Hoon Lee, "A 10b 1MS/s-to-10MS/s 0.11um CMOS SAR ADC for Analog TV Applications," International SoC Design Conference (ISSCC), pp.124-127, Nov. 2012.
  18. X. Yu, et al., "A dual-channel 10b 80MS/s pipeline ADC with 0.16mm2 area in 65nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, June 2009, pp. 272-273.
  19. K. El-Sankary, and M. Sawan, "10-b 100-MS/s Two-Channel Time-Interleaved Pipelined ADC," in Proc. CICC, Sept. 2006, pp. 217-220.
  20. C. S. Shin, and G. C. Ahn, "A 10b 100-MS/s Dual-Channel Pipelined ADC Using Dynamic Memory Effect Cancellation Technique," IEEE Trans. Circuits Syst. II, Fundam. Theory Appl., vol. 58, no. 5, pp. 274-278, May 2011.
  21. P. N. Singh, A. Kumar, C. Debnath, and R. Malik, "A 1.2v 11b 100Msps 15mW ADC realized using 2.5b pipelined stage followed by time interleaved SAR in 65nm digital CMOS process," in Proc. CICC, Sept. 2008, pp. 305-308.
  22. C. H. Law, P. J. Hurst, and S. H. Lewis, "A Four-Channel Time-Interleaved ADC With Digital Calibration of Interchannel Timing and Memory Errors," IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2091-2103, Oct. 2010. https://doi.org/10.1109/JSSC.2010.2061630