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Abstract

This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images.
The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of
image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to
remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental
results show that the average PSNR of the proposed method is 056 ~ 4dB higher than that of the state-of-the art
group—sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective
and subjective qualities.

Keywords : Compressed sensing, Group-sparsity recovery, Color, Edge-Preserving Filter
I. Introduction acquisition paradigm that enables sampling of signals
at a rate much lower than the Nyquist/Shannon rate'!
Compressed sensing (CS) is a new signal -, Therefore, it can reduce sampling cost much, ie.,

complexity and memory requirement. It
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is also
especially for high
resolution image that normally produces large data
volume. In this context, much efforts have been made
to improve the performance of CS recovery for
images. However, most of them work on improving
the quality of CS recovery for gray-scale image, and

only few approaches actually focus on color images.
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Note that it is provedm that CS recovery solution for
gray-scale images does not work well for color
images since the correlation between three RGB color
channels are not sufficiently exploited.

CS scheme for color image is first proposed in [5]
by combining Bayer color filter with the existing
CS.

components are sensed separately, but are jointly

single—pixel In the framework, three color
recovered. Following the same sensing scheme[S], the
work [4] proposed a scheme utilizing group-sparsity
minimization to account for the high correlation
between the three color channels. It performs much
better than that [5] in terms of both objective and
subjective qualities, however, it still leaves space for
further

pursuing the sparsity of image signal thus lacking in

improvement since it only focuses on
caring characteristics of image (e.g., its structures) as
well as the human visual system (HVS).

In order to overcome the aforementioned problems
while noticing that energy of natural images is
mostly concentrated on low frequency coefficients,
the work [6] proposed a group-sparsity based hard
thresholding method (GIHT) that kept low frequency
RGB-grouped coefficients in zigzag scan order, while
setting the rest to zero. The number of preserved
coefficient groups was chosen as a half of number of
measurements which is defined as a multiplication of
measurement rate ( £, 0 < R < 1) with resolution of
original signal. In that way, important low frequency
coefficient groups (in terms of energy) were
preserved and updated more accurately, expecting to
give better quality of reconstructed image. However,
it still does not reflect various perceptual sensitivity
of each transform coefficient. Additionally, when the
measurement rate increases, number of preserved
coefficient groups also increases, so insignificant
grouped coefficients (i.e., the ones with more noises

than image information) may still be kept.

In this paper, to improve the quality of
reconstructed image in objective and subjective
qualities as well, we propose executing visual
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weighting in the group—sparsity minimization. The
visually weighting scheme is designed to reflect
various perceptual sensitivity of each transform
coefficient group. A large weight is assigned for
visually significant coefficient groups, while small
weight is assigned for visually less significant
coefficient ones. The weighting process is applied to
group-sparsity  smoothed
(GSLZO)[4], which i1s one of the representative
group-sparsity minimization techniques for color
images, the
HVS_GSL20. The proposed method not only pursues

sparsity of image signal, but also addresses HVS

ly y-norm  minimization

forming proposed method named

characteristics in the CS recovery. Moreover, human
filter

characteristics, so the proposed weighting process is

eye 1s well known for its low pass
expected to smooth images. Therefore, in order to
preserve edges of image better, we incorporate it
with an edge-preserving filter, named bilateral filter'”
By this way, the quality of reconstructed image is
further enhanced.

The rest of this paper is organized as follows.
Section II represents fundamental background of CS
for color images. Section III describes the proposed
method  of

minimization

visually  weighted  group—sparsity
with filter.

Experimental results are presented in Section IV.

edge—preserving
Finally, Section V draws some conclusions.

II. Background

[1]

It is shown™ that a finite-dimensional signal

X< RY having sparse or compressible representation
in a sparsity domain (e.g., DCT or DWT) can be
exactly recovered with an overwhelming probability

from a small number of M measurements (M < N ).

In CS, the measurement rate is defined as R= % .

Projecting X using a measurement matrix @ gives

the measurement vector as:
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Y=06X (1)

More specifically, in color images, the measurement

vector can be represented as:

Yo=2:X¢ 2)

where V.= [V VYEYHT | Y, Y and Y, are
respective measurement vector of R, G, and B
channels, @, is a block diagonal measurement matrix,
bo=diag(D,P.P,), and X=X X XAT It
satisfies some conditions, e.g., restricted isometric

property and incoherence condition'™.

In case an
image is not apparently sparse in spatial domain, but
has a compressible representation in a transform
domain (e.g., DCT) of s after transforming by

X=1s, (2) can be recast as:

Ye=Asc 3)
where A=diag(® 0,0 W,P0) and
sc=Ispstsphl 3 sp, sg and sp are transform

coefficients of R, G, and B channel, respectively.
the the

non-trivial, so the transform -coefficients of each

Since correlation among channels is

channel corresponding to the same index (e,
frequency location of transform) should be also
correlated. Therefore, in order to guarantee all three
high-valued coefficients corresponding to the same
index survive in the process of CS recovery, the
transform coefficients of all channels of the same
index are grouped together to form a single row

vector. Now, the transform coefficients vector can be
represented as b= [b,....by] T where N is the
number of transform coefficients of each color

channel. A straight forward way to find a solution of

(3) is to minimize the [, y—norm as following:

min bl 4y s.t. Yo=Ab (4)

AT
Fol,o= D3 1CIb, |,>0)  and

m=1

where

(1676)
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10b, | ,>0)=1 only if [ b, ,>0 . I[9] has

reported an approach to overcome NP-hardness of
the problem of (4). Next, we will discuss how to
address HVS characteristic

enhance the quality of reconstructed image.

in the approach to

1. Visually Weighted Group—sparsity
Recovery With Edge—Preserving Filter

1. Visually weighting matrices of R, G, and B
channels
Human eye is more sensitive to low frequency
coefficients than high frequency ones. By noting the
idea of taking the characteristic of HVS into account
by having weighting matrix in quantization process
of JPEG, it is already proposed to have a perceptual

1ol also, but it is done only

weighting matrix for CS
for luminance component. In this paper, we extend
the same idea to all color components by using three
quantization tables of color components designed by
[11]. The visually weighting matrix for each color

component is calculated as:

5)

where k= {1,2,3} R, G,

is a weight value given to

represents and B

channel, respectively; wf i
the corresponding DCT coefficient of color component
at frequency position (4,7); qf j is the corresponding

element in quantization matrix of color component k.
)

coefficients are assigned with larger weights (or vice

shows that those perceptually more sensitive

versa). Next we will show how to apply this visually
weighting scheme to group-sparsity minimization to

enhance the quality of reconstructed image.

2. Visually weighted group—sparsity
minimization
To overcome the NP-hard problem in solving (4),

authors of [4] adopted the similar idea in [9] to form
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the group-sparsity smoothed I, y-norm (GSL20)
minimization. In this method, the non-smooth—-norm
function is replaced by a smooth zero-mean Gaussian
function where smoothness can vary depending on

(= 1 b, /20%)

f(T(b77L):e ’

m = 1,..., N . However, the smooth function f,(b,,)

the value of o,

does not reflect perceptual sensitivity of transform
coefficients; therefore, by assigning large weights to
perceptually  significant coefficients, and small
weights to visually less significant coefficients, we
not only enhance the sparsity of image in transform

domain but also reflect perceptual characteristics well.

The proposed visually weighted function
(HVS_GSL20) is defined as:
fo(w,, ®b,, )= e(_ I 5@ /27 ),m =1,..,N (©6)

where w,, = [wg,  Wepnwg,] Tepresents weight

values of each color component; “®” denotes
element-wise multiplication. Note that:

# 1. Hetek= HVS_GSL20 59 iy

Table 1. The proposed HVS_GSL20 recovery.

Input: measurement vector Y. ; measurement
matrix A; visually weighting matrix

w=[wy,...,;wy] ; initial b0 O’min:1075 ;

o=cmax(| b, | ;) ; knax and constant p

Output: recovered group correlated coefficients
Breco)
While (o> o,,;,) and (k< k,,,) do
1. Maximize (8)
a. Initialize g=b"" "
b. Let
Ag=lpe 9@ w, | ;/21727_._791\@7 lgr@wyl 3/2”2]T

c. Update: g =g—pudg
d. Project: g=g— A (Ag— Y,)
2. Set b*) =g ; update o; k=k+1
End of while
Output® b(,eco)> Xc(reco)
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1; | w,®b, [2=0
limf, (w,, ®b,,)= : (7)
o—0 7 " " 07 || wm,@bm ” ; = 0
Therefore, by replacing the smooth function

(1677)

fo(w, ®b,,) by the non-smooth

function, the problem in (4) becomes:

l2$0 —norm

max, limf, (w,, ©®b,, ) suchthat Y, = Ab

o—0

®)

Since f,(w,,®b,,) is smooth, so (8) can be
solved by the gradient-based method. As explained
above, the sparsity degree of weighted transform
(w,,®b,,) is higher than that of
transform coefficients (b) without any weighting
(7,
approaches to zero, the visually weighted GSL20

coefficients

process; therefore, according to when o
function(f, (w®b)) becomes spikier (like I, ,-norm)
than the GSL20 function (f,(b)). As a result, the

group of visually significant coefficients is likely to
be recovered more exactly. Table 1 summarizes the
proposed HVS_GSL20 algorithm.

3. Visually weighted group—sparsity smoothed
I, y—norm minimization with
edge—preserving filter

Human eye is well known as a low pass filter, so

the visually weighting process is expected to smooth
image. Additionally, in CS recovery, recovered image
suffers much from noise especially when image is
sampled at a low measurement rate (since we need
to recover N dimensional signal from much lower M
dimensional signal). Therefore, in order to further
remove noise but still preserve edges of image, we
let the image go through a filtering process before
being estimated by visually weighted group-sparsity
For this, the bhilateral filter'”

employed since it can smooth image while preserving

minimization. is
edges relatively well. The procedure of the proposed
method is depicted in Figure 1. After an initialization,

image is filtered in spatial domain by a bilateral
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filter. Then, the filtered is converted to
transform domain (DCT). Solution is updated by
projecting it into a feasible set (as step 1.d in Table
1). Then,
coefficients are recovered by HVS_GSL20 recovery.

image

the groups of correlated transform
This iteration is performed until a stopping criterion

is satisfied ( 0 < o5, or k= k. ).
IV. Experimental Results

1. Test conditions

In order to evaluate the performance of the
proposed visually weighted group-sparsity
minimization, we use four test color images (Lena,
Mandrill, Jet, and House). Each image is block-based
sensed with a random Gaussian measurement matrix
which satisfies the RIP condition and the incoherence
condition with transform matrix (DCT) with an
overwhelming probability. Block size of 32x32 is
used. Each color component is sensed at the same
measurement rate ranging from 0.1 to 0.5. Image is
reconstructed block by block. The parameters of a
bilateral filter are chosen by heuristic experiments
such as: window size of bilateral filter is set to 5,
and spatial domain and intensity domain standard
deviation of a bilateral filter is set to 05 and 0.1,
respectively. Performances of the proposed methods
(HVS_GSL20 and EP_HVS_GSL20)
with the group—sparsity minimization techniques
GSL20" and GIHT™® in both terms of objective and

subjective qualities.

are compared

2. Objective quality

As shown in Table 2, the proposed HVS_GSL20
and EP_HVS_GSL20 perform much better than
GSL20; the average PSNR gains of HVS_GSL20 are
about 1.18dB (Lena), 0.56dB (Mandrill), 2.04dB (Jet),
and 1.92dB (House). It shows that by applying the
HVS characteristics to GSL20, groups of correlated
transform coefficients are recovered more exactly.
With the help of the bilateral filter, we can enhance

(1678)
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Table 2. Recovery performance comparison(PSNR, dB).

Image Recovery 0.1 0.2 0.3 0.4 0.5
GSL20 [4] 229 | 269 | 292 | 311 | 328
GIHT [6] 256 | 281 | 303 | 319 | 334
Lena HVS_GSL20 239 | 284 | 307 | 323 | 35
EP_HVS_GSL20 | 259 | 303 | 325 | 341 | 356
GSL20 [4] 180 | 194 | 204 | 215 | 227
GIHTI6] 180 | 192 | 205 | 217 | 228
Mandrill
HVS_GSL20 187 | 199 | 209 | 221 | 232
EP_HVS_GSL20 | 197 | 212 | 223 | 235 | 248
GSL20 [4] 213 | 258 | 285 | 308 | 329
GIHTI6] 239 | 272 | 297 | 318 | 339
ot
Je HVS_GSL20 26 | 274 | 309 | 334 | 352
EP_HVS_GSL20 | 243 | 297 | 329 | 353 | 371
GSL20 [4] 197 | 237 | 260 | 282 | 303
GIHTI6] 21 | 247 | 269 | 287 | 308
House B p - -
HVS_GSL20 211 | 253 | 282 | 305 | 324
EP_HVS_GSL20 | 228 | 269 | 295 | 315 | 331
Initalization
L 4 "...'. )
DCT :
I_i;I
b
Projecting into
feasible set
ag 1. JX-E=-ZH g8 AZH JIEX 28-32
M z|25}F (EP_HVS_GSL20)
Fig. 1. Edge—preserving-filter-aided visually — weighted

group-sparsity minimization (EP_HVS_GSL20).

smoothness while still preserving edges of image. As
a result, the quality of reconstructed image is further
improved. In the same manner, in comparing with
GSL20, the average PSNR gains of EP_HVS_GSL20
is 31dB (Lena), 19dB (Mandrill), 4dB (Jet), and
3.18dB  (House) the bilateral filter
incorporated HVS_GSL20.  Additionally,

when is

to n
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GSL20[4] (FSIMc=0.8331) GIHT [6] (FSIMc = 0.8243)

111

HVS_GSL20 (FSIMc=0.8629) EP_HVS_GSL20(FSIMc= 0.881)

a8 2. EHE 02, 25327| 323201 S E Lena & Mandrill &4+
Fig. 2. Reconstructed Lena and Mandrill images at sub-rate 0.2, block size 32x32.
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Coefficient index in zigzag scan order

(a)

Coefficient index in zigzag scan order

(b)

a8 3. oldX| X (a) Lena A (b) Mandrill &4
Fig. 3. Energy distribution (a) Lena image and (b) Mandrill image.

comparison with GIHT, the objective quality of the
proposed HVS_GSL20 is higher (for sub-rates 0.2 to
05), ie., average PSNR gains of HVS_GSL20 is
0.3dB (Lena), 0.5dB (Mandrill), 1.1dB (Jet), and 1.3dB
at sub-rate 0.1, PSNR of
HVS_GSL20 scheme is lower, except in case of

(House); however,
Mandrill image. It can be explained by using energy
distribution of Lena and Mandrill image as illustrated
in Figure 3. In Mandrill image (it is textured image),
energy 1s spread in both low frequency and high
frequency coefficients. Therefore, by just keeping low

frequency coefficients and replacing the rest of them

to zero, GIHT does not offer good recovery quality in
Mandrill image. Besides, in Lena image (it is smooth
image), most energy is concentrated in low frequency
coefficients. Note that, in GIHT, the number of
preserved coefficient groups is chosen as a half of
of

measurement rate increases, the number of preserved

number measurements;  therefore, =~ when
coefficient groups increases, results in insignificant
coefficients (whose amount of noise is higher than
amount of image information) may still be kept. In
contrast, by assigning visual weights that reflect well

various perceptual sensitivity of each transform

(1679)
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coefficient, the proposed HVS_GSLZ20 can offer better
recovery quality for various types of image (e.g.,

smooth or detail).

3. Subjective Quality

Figure 2 compares the reconstructed images of the
proposed HVS_GSL20, EP_HVS_GSL20, and the
anchor methods GSL20 and GIHT at sub-rate 0.2.
We use the Feature Similarity index for color images
(FSIMc)™ to evaluate subjective quality, the higher
FSIMc value means the better subjective quality (it
ranges from 0 to 1). By the proposed visually
weighting process, visually significant coefficients are
recovered more exactly, leads to blocking artifacts (it
i1s caused by mismatch of dominant transform
coefficients between two neighboring blocks™) are
mitigated much in the reconstructed image of
HVS_GSL20. Therefore, the proposed HVS_GSL20
offers higher FSIMc index than GSL20 and GIHT.
Furthermore, as shown in those reconstructed images
of EP_HVS_GSL20, with the help of the bilateral
filter, we can reduce much high frequency oscillatory

artifacts
[14])

(which occurs due to low measurement
rate as well those appear in the reconstructed
images of HVS_GSL20. As a result, EP_HVS_GSL20
gives the highest FSIMc index.

V. Conclusions

This paper addresses HVS characteristics to group
sparsity minimization for color images. The proposed
HVS_GSL20 not only pursues sparsity of image in
transform domain but also takes into account human
by
incorporating a bilateral filter with HVS_GSL20, we
while
Experimental

visual system  characteristics.  Moreover,

reduced noise in reconstructed image
preserving the structure of image.
results verified the superiority of EP_HVS_GSL20
over existing methods of GIHT and GSL20 in both
terms of objective and subjective qualities. In the

future, we will take more investigations to HVS

(1680)

pAYS|

XN Jt5A Mg I8 O5-3 4y 52 Viet Anh Nguyen 2

characteristics and utilize them in both CS sampling

and recovery process to enhance quality of
reconstructed image.
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