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컬러 영상의 압축 센싱을 위한 경계보존 필터 및 시각적 

가중치 적용 기반 그룹-희소성 복원

( Visually Weighted Group-Sparsity Recovery for Compressed Sensing 

of Color Images with Edge-Preserving Filter )
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요  약

본 논문에서는 컬러 영상의 압축 센싱 복원 기술에 인지시각시스템의 특성을  접목해 복원 영상의 화질을 향상 시키는 방

법을 연구하였다. 제안하는 그룹-희소성 최소화 기반 컬러 채널별 시각적 가중치 적용 방법은 영상의 성긴 특성뿐만 아니라 

인지시각시스템의 특성을 반영할 수 있도록 설계되었다. 또한, 복원 영상에서의 잡음을 제거하기 위하여 설계한 경계보존 필터

는 영상의 경계 부분에 대한 디테일을 보존함으로써, 복원 영상의 품질을 향상 시키는 역할을 한다. 실험 결과, 제안하는 방법

이 최신의 그룹-희소성 최소화 기반 방법들보다 평균 0.56 ∼ 4dB 더 높은 PSNR을 달성함으로써, 객관적 성능을 향상시킬 수 

있음을 확인하였으며, 주관적 화질 또한 기존 방법들에 비해 뛰어나다는 것을 복원된 영상 간 비교를 통해 확인하였다.

Abstract

This paper integrates human visual system (HVS) characteristics into compressed sensing recovery of color images. 

The proposed visual weighting of each color channel in group-sparsity minimization not only pursues sparsity level of 

image but also reflects HVS characteristics well. Additionally, an edge-preserving filter is embedded in the scheme to 

remove noise while preserving edges of image so that quality of reconstructed image is further enhanced. Experimental 

results show that the average PSNR of the proposed method is 0.56 ∼ 4dB higher than that of the state-of-the art 

group-sparsity minimization method. These results prove the excellence of the proposed method in both terms of objective 

and subjective qualities. 

      Keywords : Compressed sensing, Group-sparsity recovery, Color, Edge-Preserving Filter

Ⅰ. Introduction

Compressed sensing (CS) is a new signal 
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acquisition paradigm that enables sampling of signals 

at a rate much lower than the Nyquist/Shannon rate[1

∼3]
. Therefore, it can reduce sampling cost much, i.e., 

complexity and memory requirement. It is also 

promising in image sensing, especially for high 

resolution image that normally produces large data 

volume. In this context, much efforts have been made 

to improve the performance of CS recovery for 

images. However, most of them work on improving 

the quality of CS recovery for gray-scale image, and 

only few approaches actually focus on color images. 

(1674)
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Note that it is proved
[4]
 that CS recovery solution for 

gray-scale images does not work well for color 

images since the correlation between three RGB color 

channels are not sufficiently exploited.

CS scheme for color image is first proposed in [5] 

by combining Bayer color filter with the existing 

single-pixel CS. In the framework, three color 

components are sensed separately, but are jointly 

recovered. Following the same sensing scheme[5], the 

work [4] proposed a scheme utilizing group-sparsity 

minimization to account for the high correlation 

between the three color channels. It performs much 

better than that [5] in terms of both objective and 

subjective qualities, however, it still leaves space for 

further improvement since it only focuses on 

pursuing the sparsity of image signal thus lacking in 

caring characteristics of image (e.g., its structures) as 

well as the human visual system (HVS).

In order to overcome the aforementioned problems 

while noticing that energy of natural images is 

mostly concentrated on low frequency coefficients, 

the work [6] proposed a group-sparsity based hard 

thresholding method (GIHT) that kept low frequency 

RGB-grouped coefficients in zigzag scan order, while 

setting the rest to zero. The number of preserved 

coefficient groups was chosen as a half of number of 

measurements which is defined as a multiplication of 

measurement rate (      ) with resolution of 

original signal. In that way, important low frequency 

coefficient groups (in terms of energy) were 

preserved and updated more accurately, expecting to 

give better quality of reconstructed image. However, 

it still does not reflect various perceptual sensitivity 

of each transform coefficient. Additionally, when the 

measurement rate increases, number of preserved 

coefficient groups also increases, so insignificant 

grouped coefficients (i.e., the ones with more noises 

than image information) may still be kept. 

In this paper, to improve the quality of 

reconstructed image in objective and subjective 

qualities as well, we propose executing visual 

weighting in the group-sparsity minimization. The 

visually weighting scheme is designed to reflect 

various perceptual sensitivity of each transform 

coefficient group. A large weight is assigned for 

visually significant coefficient groups, while small 

weight is assigned for visually less significant 

coefficient ones. The weighting process is applied to 

group-sparsity smoothed -norm minimization 

(GSL20)
[4]
, which is one of the representative 

group-sparsity minimization techniques for color 

images, forming the proposed method named 

HVS_GSL20. The proposed method not only pursues 

sparsity of image signal, but also addresses HVS 

characteristics in the CS recovery. Moreover, human 

eye is well known for its low pass filter 

characteristics, so the proposed weighting process is 

expected to smooth images. Therefore, in order to 

preserve edges of image better, we incorporate it 

with an edge-preserving filter, named bilateral filter[7]. 

By this way, the quality of reconstructed image is 

further enhanced.

The rest of this paper is organized as follows. 

Section II represents fundamental background of CS 

for color images. Section III describes the proposed 

method of visually weighted group-sparsity 

minimization with edge-preserving filter. 

Experimental results are presented in Section IV. 

Finally, Section V draws some conclusions.

Ⅱ. Background

It is shown[1] that a finite-dimensional signal    

∈  having sparse or compressible representation 

in a sparsity domain (e.g., DCT or DWT) can be 

exactly recovered with an overwhelming probability 

from a small number of M measurements (≪   ). 

In CS, the measurement rate is defined as   


 . 

Projecting X using a measurement matrix   gives 

the measurement vector as:

(1675)
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   (1)

More specifically, in color images, the measurement 

vector can be represented as:

   (2)

where   



  ,  ,  , and   are 

respective measurement vector of R, G, and B 

channels,   is a block diagonal measurement matrix, 

   , and   



 . It 

satisfies some conditions, e.g., restricted isometric 

property and incoherence condition
[8]
. In case an 

image is not apparently sparse in spatial domain, but 

has a compressible representation in a transform 

domain (e.g., DCT) of s after transforming by 

   , (2) can be recast as: 

   (3)

where     and 

  
 
 
   ;   ,   and   are transform 

coefficients of R, G, and B channel, respectively. 

Since the correlation among the channels is 

non-trivial, so the transform coefficients of each 

channel corresponding to the same index (i.e., 

frequency location of transform) should be also 

correlated. Therefore, in order to guarantee all three 

high-valued coefficients corresponding to the same 

index survive in the process of CS recovery, the 

transform coefficients of all channels of the same 

index are grouped together to form a single row 

vector. Now, the transform coefficients vector can be 

represented as     
 , where N is the 

number of transform coefficients of each color 

channel. A straight forward way to find a solution of 

(3) is to minimize the -norm as following:

min∥∥     (4)

where ∥∥  
  



∥∥    and 

∥∥      only if ∥∥    . [9] has 
reported an approach to overcome NP-hardness of 

the problem of (4). Next, we will discuss how to 

address HVS characteristic in the approach to 

enhance the quality of reconstructed image.

Ⅲ. Visually Weighted Group-sparsity 

Recovery With Edge-Preserving Filter

1. Visually weighting matrices of R, G, and B 

channels 

Human eye is more sensitive to low frequency 

coefficients than high frequency ones. By noting the 

idea of taking the characteristic of HVS into account 

by having weighting matrix in quantization process 

of JPEG, it is already proposed to have a perceptual 

weighting matrix for CS[10] also, but it is done only 

for luminance component. In this paper, we extend 

the same idea to all color components by using three 

quantization tables of color components designed by 

[11]. The visually weighting matrix for each color 

component is calculated as:


  





(5)

where     represents R, G, and B 

channel, respectively; 
  is a weight value given to 

the corresponding DCT coefficient of color component  

at frequency position ;  
  is the corresponding 

element in quantization matrix of color component k. 

(5) shows that those perceptually more sensitive 

coefficients are assigned with larger weights (or vice 

versa). Next we will show how to apply this visually 

weighting scheme to group-sparsity minimization to 

enhance the quality of reconstructed image.

2. Visually weighted group-sparsity 

minimization

To overcome the NP-hard problem in solving (4), 

authors of [4] adopted the similar idea in [9] to form 

(1676)



2015년 9월 전자공학회 논문지 제52권 제9호 109

Journal of The Institute of Electronics and Information Engineers  Vol.52, NO.9, September 2015

the group-sparsity smoothed -norm (GSL20) 

minimization. In this method, the non-smooth-norm 

function is replaced by a smooth zero-mean Gaussian 

function where smoothness can vary depending on 

the value of  ,     
∥∥  , 

   . However, the smooth function     

does not reflect perceptual sensitivity of transform 

coefficients; therefore, by assigning large weights to 

perceptually significant coefficients, and small 

weights to visually less significant coefficients, we 

not only enhance the sparsity of image in transform 

domain but also reflect perceptual characteristics well. 

The proposed visually weighted function 

(HVS_GSL20) is defined as: 

 ⊙   
∥⊙∥   (6)

where      represents weight 

values of each color component; “⊙” denotes 

element-wise multiplication. Note that:

Input: measurement vector   ;  measurement 

matrix A; visually weighting matrix 

      ; initial 
  ; min     ; 

  max∥∥    ; max  and constant   
Output: recovered group correlated coefficients 

 

While   min   and   max   do
1. Maximize (8)

a. Initialize    

b. Let

  
∥⊙∥ 

∥⊙∥ 
c. Update:    

d. Project:     

2. Set     ; update  ;    

End of while

Output:   

표 1. 제안하는 HVS_GSL20 복원 방법

Table 1. The proposed HVS_GSL20 recovery.

lim
→
 ⊙ 









 ∥⊙∥  
 ∥⊙∥ ≠  (7)

Therefore, by replacing the smooth function 

 ⊙    by the non-smooth -norm 

function, the problem in (4) becomes:

max lim
→
 ⊙     (8)

Since  ⊙   is smooth, so (8) can be 

solved by the gradient-based method. As explained 

above, the sparsity degree of weighted transform 

coefficients ⊙   is higher than that of 

transform coefficients (b) without any weighting 

process; therefore, according to (7), when   

approaches to zero, the visually weighted GSL20 

function( ⊙ ) becomes spikier (like -norm) 

than the GSL20 function (  ). As a result, the 

group of visually significant coefficients is likely to 

be recovered more exactly. Table 1 summarizes the 

proposed HVS_GSL20 algorithm. 

3. Visually weighted group-sparsity smoothed 

-norm minimization with 

edge-preserving filter

Human eye is well known as a low pass filter, so 

the visually weighting process is expected to smooth 

image. Additionally, in CS recovery, recovered image 

suffers much from noise especially when image is 

sampled at a low measurement rate (since we need 

to recover N dimensional signal from much lower M 

dimensional signal). Therefore, in order to further 

remove noise but still preserve edges of image, we 

let the image go through a filtering process before 

being estimated by visually weighted group-sparsity 

minimization. For this, the bilateral filter[7] is 

employed since it can smooth image while preserving 

edges relatively well. The procedure of the proposed 

method is depicted in Figure 1. After an initialization, 

image is filtered in spatial domain by a bilateral 

(1677)
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filter. Then, the filtered image is converted to 

transform domain (DCT). Solution is updated by 

projecting it into a feasible set (as step 1.d in Table 

1). Then, the groups of correlated transform 

coefficients are recovered by HVS_GSL20 recovery. 

This iteration is performed until a stopping criterion 

is satisfied (  ≦ min  or ≧ max  ).

Ⅳ. Experimental Results

1. Test conditions 

In order to evaluate the performance of the 

proposed visually weighted group-sparsity 

minimization, we use four test color images (Lena, 

Mandrill, Jet, and House). Each image is block-based 

sensed with a random Gaussian measurement matrix 

which satisfies the RIP condition and the incoherence 

condition with transform matrix (DCT) with an 

overwhelming probability. Block size of 32x32 is 

used. Each color component is sensed at the same 

measurement rate ranging from 0.1 to 0.5. Image is 

reconstructed block by block. The parameters of a 

bilateral filter are chosen by heuristic experiments 

such as: window size of bilateral filter is set to 5, 

and spatial domain and intensity domain standard 

deviation of a bilateral filter is set to 0.5 and 0.1, 

respectively. Performances of the proposed methods 

(HVS_GSL20 and EP_HVS_GSL20) are compared 

with the group-sparsity minimization techniques 

GSL20[4] and GIHT[6] in both terms of objective and 

subjective qualities.

2. Objective quality

As shown in Table 2, the proposed HVS_GSL20 

and EP_HVS_GSL20 perform much better than 

GSL20; the average PSNR gains of HVS_GSL20 are 

about 1.18dB (Lena), 0.56dB (Mandrill), 2.04dB (Jet), 

and 1.92dB (House). It shows that by applying the 

HVS characteristics to GSL20, groups of correlated 

transform coefficients are recovered more exactly. 

With the help of the bilateral filter, we can enhance 

Image Recovery 0.1 0.2 0.3 0.4 0.5

Lena

GSL20 [4] 22.9 26.9 29.2 31.1 32.8

GIHT [6] 25.6 28.1 30.3 31.9 33.4

HVS_GSL20 23.9 28.4 30.7 32.3 33.5

EP_HVS_GSL20 25.9 30.3 32.5 34.1 35.6

Mandrill

GSL20 [4] 18.0 19.4 20.4 21.5 22.7

GIHT[6] 18.0 19.2 20.5 21.7 22.8

HVS_GSL20 18.7 19.9 20.9 22.1 23.2

EP_HVS_GSL20 19.7 21.2 22.3 23.5 24.8

Jet

GSL20 [4] 21.3 25.8 28.5 30.8 32.9

GIHT[6] 23.9 27.2 29.7 31.8 33.9

HVS_GSL20 22.6 27.4 30.9 33.4 35.2

EP_HVS_GSL20 24.3 29.7 32.9 35.3 37.1

House

GSL20 [4] 19.7 23.7 26.0 28.2 30.3

GIHT[6] 22.1 24.7 26.9 28.7 30.8

HVS_GSL20 21.1 25.3 28.2 30.5 32.4

EP_HVS_GSL20 22.8 26.9 29.5 31.5 33.1

표 2. 복원 성능 비교 (PSNR, dB)

Table 2. Recovery performance comparison(PSNR, dB).

그림 1. 에지-보존-필터 활용 시각적 가중치 그룹-희소

성 최소화 (EP_HVS_GSL20)

Fig. 1. Edge-preserving-filter-aided visually weighted 

group-sparsity minimization (EP_HVS_GSL20).

smoothness while still preserving edges of image. As 

a result, the quality of reconstructed image is further 

improved. In the same manner, in comparing with 

GSL20, the average PSNR gains of EP_HVS_GSL20 

is 3.1dB (Lena), 1.9dB (Mandrill), 4dB (Jet), and 

3.18dB (House) when the bilateral filter is 

incorporated to HVS_GSL20. Additionally, in 

(1678)
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그림 2. 측정율 0.2, 블록크기 32x32에서 복원된 Lena 및 Mandrill 영상

Fig. 2. Reconstructed Lena and Mandrill images at sub-rate 0.2, block size 32x32.

그림 3. 에너지 분포 (a) Lena 영상 (b) Mandrill 영상

Fig. 3. Energy distribution (a) Lena image and (b) Mandrill image.

comparison with GIHT, the objective quality of the 

proposed HVS_GSL20 is higher (for sub-rates 0.2 to 

0.5), i.e., average PSNR gains of HVS_GSL20 is 

0.3dB (Lena), 0.5dB (Mandrill), 1.1dB (Jet), and 1.3dB 

(House); however,  at sub-rate 0.1, PSNR of 

HVS_GSL20 scheme is lower, except in case of 

Mandrill image. It can be explained by using energy 

distribution of Lena and Mandrill image as illustrated 

in Figure 3. In Mandrill image (it is textured image), 

energy is spread in both low frequency and high 

frequency coefficients. Therefore, by just keeping low 

frequency coefficients and replacing the rest of them 

to zero, GIHT does not offer good recovery quality in 

Mandrill image. Besides, in Lena image (it is smooth 

image), most energy is concentrated in low frequency 

coefficients. Note that, in GIHT, the number of 

preserved coefficient groups is chosen as a half of 

number of measurements; therefore, when 

measurement rate increases, the number of preserved 

coefficient groups increases, results in insignificant 

coefficients (whose amount of noise is higher than 

amount of image information) may still be kept. In 

contrast, by assigning visual weights that reflect well 

various perceptual sensitivity of each transform 
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coefficient, the proposed HVS_GSL20 can offer better 

recovery quality for various types of image (e.g., 

smooth or detail).

3. Subjective Quality

Figure 2 compares the reconstructed images of the 

proposed HVS_GSL20, EP_HVS_GSL20, and the 

anchor methods GSL20 and GIHT at sub-rate 0.2. 

We use the Feature Similarity index for color images 

(FSIMc)
[12]

 to evaluate subjective quality, the higher 

FSIMc value means the better subjective quality (it 

ranges from 0 to 1). By the proposed visually 

weighting process, visually significant coefficients are 

recovered more exactly, leads to blocking artifacts (it 

is caused by mismatch of dominant transform 

coefficients between two neighboring blocks
[13]

) are 

mitigated much in the reconstructed image of 

HVS_GSL20. Therefore, the proposed HVS_GSL20 

offers higher FSIMc index than GSL20 and GIHT. 

Furthermore, as shown in those reconstructed images 

of EP_HVS_GSL20, with the help of the bilateral 

filter, we can reduce much high frequency oscillatory 

artifacts (which occurs due to low measurement 

rate[14]) as well those appear in the reconstructed 

images of HVS_GSL20. As a result, EP_HVS_GSL20 

gives the highest FSIMc index.

V. Conclusions

This paper addresses HVS characteristics to group 

sparsity minimization for color images. The proposed 

HVS_GSL20 not only pursues sparsity of image in 

transform domain but also takes into account human 

visual system characteristics. Moreover, by 

incorporating a bilateral filter with HVS_GSL20, we 

reduced noise in reconstructed image while 

preserving the structure of image.  Experimental 

results verified the superiority of EP_HVS_GSL20 

over existing methods of GIHT and GSL20 in both 

terms of objective and subjective qualities. In the 

future, we will take more investigations to HVS 

characteristics and utilize them in both CS sampling 

and recovery process to enhance quality of 

reconstructed image.  
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