DOI QR코드

DOI QR Code

Response of Growth and Functional Components in Baby Vegetable as Affected by LEDs Source and Luminous Intensity

LEDs 광조성 및 광도가 베이비채소의 생육 및 기능성물질에 미치는 영향

  • 윤성탁 (단국대학교 식량생명공학과) ;
  • 정인호 (단국대학교 식량생명공학과) ;
  • 김영중 (단국대학교 식량생명공학과) ;
  • 한태규 (단국대학교 식량생명공학과) ;
  • 유제빈 (단국대학교 식량생명공학과) ;
  • 제은경 (단국대학교 생명자원과학과)
  • Received : 2015.07.15
  • Accepted : 2015.08.08
  • Published : 2015.09.30

Abstract

This study was conducted to investigate the growth characteristics and functional materials of baby vegetables as affected by different LEDs and luminous intensity at Anseongsi, Gyeonggi Province, in 2014. Test crops were beet, chicory, spinach, red leaf lettuce, crown daisy and red mustard purchased from the seed company of Dongbu Hannong and Jinheung. Growth characteristics were measured and the content of functional materials was analyzed 40 days after seeding at plug plate. Treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity showed the highest number of leaves in five baby vegetables of beet, chicory, red leaf lettuce, crown daisy and red mustard. The highest shoot length of chicory, spinach, red leaf lettuce, crown daisy and red mustard was obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Fresh weight and dry weight of all six baby vegetables were the highest in treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Content of chlorophyll a and chlorophyll b of spinach, red leaf lettuce and red mustard showed the highest in Fluorescent lamp at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity whereas other crops did not show definite trend under different LEDs lights and luminous intensity. The highest total content of anthocyanins and polyphenol were obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity in all six baby vegetables. Free radical scavenging activity was highest in all six vegetable crops at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity, but it was not different significantly between LEDs. As a result, the growth and the content of functional material of baby vegetables are generally to be increased in Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Mixed light of Red+Blue is thought to give good effect on the growth and the content of functional material in baby vegetable crops. Because there are many differences in regard of LED lights, crop varieties, cultivation and experimental methods in their impact on the growth and functional materials of baby vegetables among researchers, it is considered that a more precise studies are needed for the crop responses to LED light and luminous intensity.

LEDs 광원 및 광도에 따른 베이비채소 6작물의 생육 특성과 기능성물질 함량을 구명하고자 Fluorescent lamp (100, 125, $150{\mu}mol\;m^{-2}s^{-1}$), Red+Blue 1:1 (100, 125, $150{\mu}mol\;m^{-2}s^{-1}$), Red+Blue 2:1 (100, 125, $150{\mu}mol\;m^{-2}s^{-1}$), Red+Blue 4:1 (100, 125, $150{\mu}mol\;m^{-2}s^{-1}$) 광원하에서 파종 40일 후에 수확하여 조사한 결과는 다음과 같다. 1. 베이비채소의 엽수는 시금치를 제외한 비트, 치커리, 적상추, 쑥갓, 겨자에서 Red+Blue(4:1) $150{\mu}mol\;m^{-2}s^{-1}$ 처리에서 가장 많았다. 2. 초장은 비트를 제외한 치커리, 시금치, 적상추, 쑥갓, 겨자에서 Red+Blue(4:1) $150{\mu}mol\;m^{-2}s^{-1}$ 처리에서 가장 높았다. 3. 생체중과 건물중은 비트, 치커리, 시금치, 적상추, 쑥갓, 겨자에서 Red+Blue(4:1) $150{\mu}mol\;m^{-2}s^{-1}$ 처리에서 가장 높았다. 4. 엽록소 a, 엽록소 b 함량은 시금치, 적상추, 겨자가 대조구인 Fluorescent lamp $150{\mu}mol\;m^{-2}s^{-1}$에서 가장 높았다. 5. 총 안토시아닌과 총 폴리페놀 함량은 비트, 치커리, 시금치, 적상추, 쑥갓, 겨자에서 Red+Blue(4:1) $150{\mu}mol\;m^{-2}s^{-1}$ 처리에서 가장 높았다. 6. Free radical 소거능은 비트, 치커리, 시금치, 적상추, 쑥갓, 겨자의 $150{\mu}mol\;m^{-2}s^{-1}$에서 높았지만 LEDs 광원별로는 차이를 보이지 않았다. 이상의 결과를 종합해 볼 때 비트, 치커리, 시금치, 적상추, 쑥갓, 겨자의 베이비 채소를 Red+Blue (4:1) $150{\mu}mol\;m^{-2}s^{-1}$에서 재배한다면 더욱 좋은 생육 효과를 기대할 수 있고 기능성 물질 함량도 다른 광도와 비교하여 상대적으로 좋았으므로 추후 상기의 베이비채소 생산 시 유용한 기초자료가 될 것으로 생각된다.

Keywords

References

  1. Bae, J. H., J. Y. Cho, B. W. Kim, H. G. Jang, and B. G. Heo. 2008. Effects of storage humidity on the sprout growth of mulberry cut twigs. J. Bio-Environment Control. 17: 20-25.
  2. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1200.
  3. Choi, S. Y., M. J. Kil, Y. S. Kwon, J. A. Jung, and S. K. Park. 2012. Effect of Different Light Emitting Diode (LED) on Growth and Flowering in Chrysanthemun. Flower Res. J. 20(3): 128-133.
  4. Dewanto, V., X. Wu, K. K. Adom, and R. H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidative activity. J. Agric. Food Chem. 50: 3010-3015. https://doi.org/10.1021/jf0115589
  5. Feng, P. 1997. A summary of background information and foodborne illness associated with the consumption of sprouts. Center for Food Safety and Applied Nutrition, Washington, DC.
  6. Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77: 483-485. https://doi.org/10.1104/pp.77.2.483
  7. Kim, H. R. and Y. H. You. 2013. Effects of red, blue, white, and far-red LED source on growth responses of wasabia japonica seedlings in plant in plant factory. Kor. J. Hort. Sci. Technol. 31(4): 415-422.
  8. Kim, J. S., and K. W. Kim. 2011. Total polyphenol contents and antioxidant activities of MeOH extracts from baby vegetables. Korean Journal of Plant Resources, 2011(4).
  9. Lee, H. S. and Y. W. Park. 2005. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. J. Kor. Soc. Food Sci. Nutr. 34(6): 759-764. https://doi.org/10.3746/jkfn.2005.34.6.759
  10. Lee, J. G., S. S. Oh, S, H. Cha, Y. A. Jang, S. Y. Kim, Y. C. Um, and S. R. Cheong. 2010 Effects of Red/Blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J. of Bio-Environment Control. 19(4): 351-359.
  11. Moon, H. S. 2009. Studies on the production and antimicrobial, anticancer activities of baby vegetables. PhD Diss., Korea Univ. Seoul.
  12. Park, K. W., D. K. Hwang, and H. M. Kang. 2003. Leafy lettuce production using baby vegetable in hydroponic system with non-woven fabric mat. Kor. J. Hort. Sci. Technol. 21(3): 175-180.
  13. Pyo, H. J., Y. H. Kim, H. M. Lee, S. W. Park, and J. H. Lee. 2010. Effect of LED light on baby leafy vegetables growth and quality. Kor. J. Hort. Sci. Technol. 28 (SUPPL. I) May.
  14. Shin, Y. S., M. J. Lee, E. S. Lee, Y. S. Lim, J. H. Ahn, J. H. Lim, Y. C. Um, S. D. Park, and J. H. Chea. 2013. Effect of single and mixed LEDs irradiation on growth and mineral absorption of lettuce (Lactuca sativa L.). Kor. J. Hort. Sci. Technol. 31 (SUPPL I) May.
  15. Son, K. H., J. H. Park, D. Kim, and M. M. Oh. 2012. Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes. Kor. J. Hort. Sci. Technol. 30(6): 664-672.
  16. Wang, H. M. G. J. Cui, K. Shi, T. Zhou, and J. Yu. 2009. Effects of light quality on $CO_2$ assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J. Photochem. Photobiol. B.96: 30-37. https://doi.org/10.1016/j.jphotobiol.2009.03.010
  17. Wu, M. C., C. Y. Hou, C. M. Jiang, Y. T. Wang, C. Y. Wang, H. H. Chen, and H. M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101: 1753-1758. https://doi.org/10.1016/j.foodchem.2006.02.010
  18. Yang, Z. D. and W. W. Zhai. 2010. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov. Food Sci. Emerg. Technol. 11(3): 471-476.
  19. Yeh, N. and J. P. Chung. 2009. High-brightness LEDs-energy dfficient lighting sources and their potential in indoor plant cultivation. Renewable Sustain able Energy Rev. 13: 2175-2180. https://doi.org/10.1016/j.rser.2009.01.027