DOI QR코드

DOI QR Code

Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials

고강도 재료에 대한 구형압입 물성평가법

  • Received : 2014.10.22
  • Accepted : 2015.06.01
  • Published : 2015.11.01

Abstract

In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

본 연구에서는 항복강도 1GPa 이상의 고강도재료에 대해 구형압입자를 이용한 물성평가법을 제시한다. 압입전산모사를 통해 하중-변위 관계를 응력-변형률 관계로 변환하는 네 압입변수에 대한 회귀식을 바탕으로, 고강도 물성평가용 프로그램을 작성했다. 이를 압입시험에 적용하면 단 한번의 하중-해중에서 얻어지는 데이터로 유효 응력-변형률곡선을 얻을 수 있다. 광범위한 재료들에 대해 구해진 물성치의 평균오차는 영률 0.3%, 항복강도 0.8 %, 변형경화지수 6.4 % 이내이다.

Keywords

References

  1. Lee, J. H., Kim, T. and Lee, H., 2010, "A Study on Robust Indentation Techniques to Evaluate Elasticplastic Properties of Metals," International Journal of Solids and Structures, Vol. 47, pp. 647-664. https://doi.org/10.1016/j.ijsolstr.2009.11.003
  2. Larsson, P.-L., Giannakopoulos, A. E., Soderlund, E., Rowcliffe, D. J. and Vestergaard, R., 1996, "Analysis of Berkovich Indentation," International Journal of Solids and Structures, Vol. 33, pp. 221-248. https://doi.org/10.1016/0020-7683(95)00033-7
  3. Giannakopoulos, A. E. and Suresh, S., 1999, "Determination of Elastoplastic Properties by Instrumented Sharp Indentation," Scripta Materialia, Vol. 40, pp. 1191-1198. https://doi.org/10.1016/S1359-6462(99)00011-1
  4. Cheng, Y. T. and Cheng, C. M., 1998, "Scaling Approach to Conical Indentation in Elasto-plastic Solids with Work Hardening," Journal of Applied Physics, Vol. 84, pp. 1284-1291. https://doi.org/10.1063/1.368196
  5. Dao, M., Chollacoop, N., Van Vliet, K. J., Venkatesh, T. A. and Suresh, S., 2001, "Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation," Acta Materialia, Vol. 49, pp. 3899-3918. https://doi.org/10.1016/S1359-6454(01)00295-6
  6. Lee, J. H., Lee, H., Hyun, H. C. and Kim, M., 2010, "Numerical approaches and Experimental Verification of the Conical Indentation Techniques for Residual Stress Evaluation," Journal of Materials Research, Vol. 25, pp. 2212-2223. https://doi.org/10.1557/jmr.2010.0275
  7. Lee, H. and Lee, J. H., 2008, "Evaluation of Material Characteristics by Micro / Nano Indentation Tests," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 10, pp. 805-816. https://doi.org/10.3795/KSME-A.2008.32.10.805
  8. Abaqus Version 6.13 User's Manual, 2013, Dassault Systems Simulia Corp., Providence, RI, USA.
  9. Tabor, D., 1951, The Hardness of Metals, Oxford University Press, London.
  10. Vander Voort, G. F., 1984, Metallography Principles and Practice, ASM international, Chapter 5.
  11. Taljat, B., Zacharia, T. and Kosel, F., 1997, "New Analytical Procedure to Determine Stress-strain Curve from Spherical Indentation Data," International Journal of Solids and Structures, Vol. 35, pp. 4411-4426.
  12. Sneddon, I. N., 1965, "The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile," International Journal of Engineering Science, Vol. 3, pp. 47-57. https://doi.org/10.1016/0020-7225(65)90019-4
  13. Pharr, C. M., Oliver, W. C. and Brotzen, F. R., 1992, "On the Generality of the Relationship among Contact Stiffness, Contact Area and Elastic Modulus during Indentation," Journal of Materials Research, Vol. 7, pp. 613-617. https://doi.org/10.1557/JMR.1992.0613
  14. Hill, R., Storakers, B. and Zdunek, A. B., 1989, "A Theoretical Study of the Brinell Hardness Test," Proceedings of the Royal Society of London A, Vol. 423, pp. 301-330. https://doi.org/10.1098/rspa.1989.0056
  15. Hay, J. and Crawford, B., 2011, "Measuring Substrateindependent Modulus of Thin Films," Journal of Material Research 26 / 6, pp. 727-738. https://doi.org/10.1557/jmr.2011.8
  16. Hyun, H. C., Lee, J. H. and Lee, H., 2008, "Mathematical Expressions for Stress-strain Curve of Metallic Material," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 1, pp. 21-28. https://doi.org/10.3795/KSME-A.2008.32.1.021
  17. Tabor, D, 1948, "A Simple Theory of Static and Dynamic Hardness," Proceedings of the Royal Society of London A 192, pp. 247-274. https://doi.org/10.1098/rspa.1948.0008
  18. Haggag, F. M., Wang, J. A., Sokolov, M. A. and Murty, K. L., 1997, "Use of Portable / In Situ Stress-strain Microprobe System to Measure Stress-strain Behavior and Damage in Metallic Materials and Structures," Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures. ASTM STP 1318, pp. 85-98.