DOI QR코드

DOI QR Code

Finite Element Analysis of Stage II Crack Growth and Branching in Fretting Fatigue

프레팅 피로에서 2단계 균열성장과 분지 유한요소해석

  • Jung, Hyun Su (Dept. of Mechanical & System Design Engineering, Hongik Univ.) ;
  • Cho, Sung-San (Dept. of Mechanical & System Design Engineering, Hongik Univ.)
  • 정현수 (홍익대학교 기계시스템디자인공학과) ;
  • 조성산 (홍익대학교 기계시스템디자인공학과)
  • Received : 2015.05.05
  • Accepted : 2015.09.07
  • Published : 2015.11.01

Abstract

The stage II fretting fatigue crack growth and branching, i.e., the process of fretting fatigue crack growth starting in an inclined direction and then changing to the normal direction, is analyzed using the finite element method. The fretting fatigue experiment data of A7075-T6 are used in the analysis. The applicability of maximum tangential stress intensity factor, maximum tangential stress intensity factor range, and maximum crack growth rate as the crack growth direction criteria is examined. It is revealed that the stage II crack growth before and after the branching cannot be simulated with a single criterion, but can be done when different criteria are applied to the two stages of crack growth. Moreover, a method to determine the crack length at which the branching occurs is proposed.

프레팅 피로균열의 2단계 성장과 분지, 즉 균열이 경사방향으로 성장하다가 방향을 전환하여 수직방향으로 성장하는 과정을 유한요소법으로 해석하였다. 해석에서 A7075-T6의 프레팅 피로실험자료를 이용하였다. 균열성장방향을 결정하는 기준으로 최대 접선응력확대계수, 최대 접선응력확대계수범위, 최대 균열성장속도의 적용 가능성을 검토하였다. 하나의 기준으로는 분지 전후의 균열성장방향을 모사할 수 없고, 분지 전후에 다른 기준을 적용하면 모사가 가능하였다. 또한 분지가 발생하는 균열 길이를 결정하는 방법도 제시하였다.

Keywords

References

  1. Lamacq, V. and Dubourg, M.-C., 1999, "Modelling of Initial Fatigue Crack Growth and Crack Branching Under Fretting Conditions," Fatigue Fract Engng Mater Struct, Vol. 22, pp. 535-542. https://doi.org/10.1046/j.1460-2695.1999.00173.x
  2. Faanes, S., 1995, "Inclined Cracks in Fretting Fatigue," Engineering Fracture Mechanics, Vol. 52, No. 1, pp. 71-82. https://doi.org/10.1016/0013-7944(94)00331-B
  3. Dubourg, M.-C. and Lamacq, V., 2000, "Stage II Crack Propagation Direction under Fretting Fatigue Loading: A New Approach in Accordance with Experimental Observation," Fretting Fatigue: Current Technology and Practice, ASTM STP 1367, American Society for Testing and Materials, West Conshohocken, PA, pp. 436-459.
  4. Mutoh, Y. and Xu, J.-Q., 2003, "Fracture Mechanics Approach to Fretting Fatigue and Problems to be Solved," Tribology International, Vol. 36, pp. 99-107. https://doi.org/10.1016/S0301-679X(02)00136-6
  5. Shkarayev, S. and Mall, S., 2003, "Computational Modelling of Shot-peening Effects on Crack Propagation Under Fretting Fatigue," J. Strain Analysis, Vol. 38, No. 6, pp. 495-506. https://doi.org/10.1243/030932403770735863
  6. Fadag, H. A., Mall, S. and Jain, V. K., 2008, "A Finite Element Analysis of Fretting Fatigue Crack Growth Behavior in Ti-6Al-4V," Engineering Fracture Mechanics, Vol. 75, pp. 1384-1399. https://doi.org/10.1016/j.engfracmech.2007.07.003
  7. Baietto, M. C., Pierres, E., Gravouil, A., Berthel, B., Fouvry, S. and Trolle, B., 2013, "Fretting Fatigue Crack Growth Simulation Based on a Combined Experimental and XFEM Strategy," Int. J. Fatigue, Vol. 47, pp. 31-43. https://doi.org/10.1016/j.ijfatigue.2012.07.007
  8. Hwang, D. H. and Cho, S.-S., 2014, "Correlation between Fretting and Plain Fatigue Using Fatigue Damage Gradient," Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2153-2159. https://doi.org/10.1007/s12206-014-0504-9
  9. Hwang, D. H. and Cho, S.-S., 2011, "Comparison and Estimation of Fretting Fatigue Damage Parameters for Aluminum Alloy A7075-T6," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 10, pp. 1229-1235. https://doi.org/10.3795/KSME-A.2011.35.10.1229
  10. Barsoum, R. S., 1976, "On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics," Int. J. Numerical Methods in Engineering, Vol. 10, pp. 25-37. https://doi.org/10.1002/nme.1620100103
  11. Hudson, C. M., 1973, "A Study of Fatigue and Fracture in 7075-T6 Aluminum alloy in vacuum and air environments," NASA TN D-7262.
  12. Erdogan, F. and Sih, G. C., 1963, "On the Crack Extension in Plates Under Plane Loading and Transverse Shear," J. Basic Eng., Vol. 85, pp. 519-527. https://doi.org/10.1115/1.3656897