DOI QR코드

DOI QR Code

Effect of Lateral Deformations of Guideway on Guidance Characteristics of Maglev Train

가이드웨이 횡변형의 자기부상열차 안내특성에의 영향 분석

  • Received : 2014.09.01
  • Accepted : 2015.09.07
  • Published : 2015.11.01

Abstract

A slender guideway is essential in improving aesthetically and reducing its construction cost which accounts for about 70% of overall investment for maglev system. As the slender guideway, however, may increase its deformation, its effect on levitation stability and guidance performance needs to be analyzed. The purpose of this study is to analyze the effect on guidance characteristics of maglev due to the lateral deformation of the guideway girder and lateral irregularity of guiderail. For doing this, 3D model considering lateral deformation of girder and irregularity of rail of the guideway is developed. Using the dynamic interaction model integrated with the proposed guideway and maglev vehicle including electromagnetics and its controller, guidance characteristics of maglev are analyzed. It is analyzed that the effect on lateral deformation of girder is relatively small compared to deformation on the lateral irregularities of guiderail.

자기부상철도에서 전체 투자비의 약 70%를 차지하는 가이드웨이의 건설비를 줄이고 미관을 향상시키기 위하여 가이드웨이의 경량화가 요구된다. 그에 따라서 가이드웨이의 변형이 증가하며 그 변형에 의한 부상안정성과 안내성능 영향을 분석할 필요가 있다. 본 논문에서는 가이드웨이의 구조물의 횡변형과 레일의 수평불규칙도에 의한 차량의 안내 특성에의 영향성 분석에 목적을 두고 있다. 이를 위하여 가이드웨이 횡변형을 포함하는 3 차원 모델의 이용이 제안된다. 제안된 가이드웨이와 차량이 통합된 동적 해석 모델을 이용하여 가이드웨이 횡변형에 의한 차량의 안내특성 분석을 수행하였다. 해석 결과 가이드웨이 거더의 횡변형에 의한 효과는 미비하지만 가이드웨이 레일의 횡방향 불규칙도에 대해서는 속도에 따라 영향을 받는 것을 알 수 있었다. 따라서 타당한 레일의 횡 불규칙도 설계 공차의 제한이 필요함을 알 수 있다.

Keywords

References

  1. Meisinger, R., 1979, "Simulation of Maglev Vehicles Riding over Single and Double Span Guideways," Mathmatics and Computers in Simulation, XXI, pp. 197-206.
  2. Popp, K., 1981, "Mathmatical Modeling and Control System Design of Maglev Vehicles," Conference on Dynamics of High Speed Vehicles, pp. 333-363.
  3. Cai. Y., Chen. S.S., Rote. D.M. and Coffey., H.T., 1994, "Vehicle/Guideway Interaction for High Speed Vehicles on a Flexible Guideway," Journal of Sound and Vibration, Vol. 175, No 5, 625-646. https://doi.org/10.1006/jsvi.1994.1350
  4. Dai, H.G., 2005, "Dynamic Behavior of Maglev Vehicle /Guideway System with Control," Ph.D. Dissertation, Case Western Reserve University.
  5. Han, H.S., 2003, "A Study on the Dynamic Modeling of a Magnetic Levitation Vehicle," JSME International, Vol. 46, No. 4, pp. 1497-1501. https://doi.org/10.1299/jsmec.46.1497
  6. Kim, K.J., Han, H.S., Kim, C.H. and Yang, S.J., "Effect of the Damper Between Maglev Vehicles on Curve Negotiation," Trans. Korean Soc. Mech. Eng A, Vol.37, No 4, pp 581-587, 2013 https://doi.org/10.3795/KSME-A.2013.37.4.581
  7. Kim, K.J., Han, H.S. and Yang, S.J., "Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway," Trans. Korean Soc. Mech. Eng A, Vol.37, No 12, pp 1559-1565, 2013 https://doi.org/10.3795/KSME-A.2013.37.12.1559
  8. Han, H.S., Yim, B.H., Lee, N.J., Kim, Y.J. and Kim, B.H., 2009, "Prediction of Ride Quality of a Maglev Vehicle Using a Full Vehicle Multi-Body Dynamic Model," Vehicle System Dynamics, Vol. 47, No. 10, pp. 1-16. https://doi.org/10.1080/00423110701877512
  9. Sinha, P. K., 1987, Electromagnetic Suspension Dynamics & Control, Peter Peregrinus Ltd, London, United Kingdom.

Cited by

  1. Dynamic Analysis of Magnetically Levitation System Propelled by Linear Synchronous Motor vol.65, pp.11, 2016, https://doi.org/10.5370/KIEE.2016.65.11.1820