DOI QR코드

DOI QR Code

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei (College of Information Science and Engineering, Fujain University of Technology) ;
  • Hayat, T. (Department of Mathematics, Quaid-I-Azam University) ;
  • Ahmad, B. (Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Chen, Cheng-Wu (Department of Maritime Information and Technology, National Kaohsiung Marine University)
  • Received : 2014.04.18
  • Accepted : 2015.10.20
  • Published : 2015.11.10

Abstract

This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

Keywords

References

  1. Buss, M. and Hashimoto, H. (1996), "Intelligent control for human-machine systems", IEEE-ASME Tran. Mech., 1, 50-55. https://doi.org/10.1109/3516.491409
  2. Chang, J.F., Yang, T.W. and Tsai, P.W. (2014), "Stock portfolio construction using evolved bat algorithm", Proceedings of 27th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, Kaohsiung, Taiwan, June.
  3. Chang, J.F., Tsai, P.W., Chen, J.F. and Hsiao, C.T. (2014), "The comparison between IABC with EGARCH in foreign exchange rate forecasting", Proceedings of 1st Euro-China Conference on Intelligent Data Analysis and Applications, Shenzhen, China, June.
  4. Chu, S.C. and Tsai, P.W. (2007), "Computational intelligence based on behaviors of cats", Int. J. Innov. Comput. Inform. Control, 3(1), 163-173.
  5. Chu, S.C., Tsai, P.W. and Pan, J.S. (2006), "Cat swarm optimization", Proceedings of Trends in Artificial Intelligence, 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China.
  6. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the 6th International Symposium on Micro Machine and Human Science, 39-43.
  7. Egresits, C., Monostori, L. and Hornyak, J. (1998), "Multistrategy learning approaches to generate and tune fuzzy control structures and their application in manufacturing", J. Intel. Manuf., 9, 323-329. https://doi.org/10.1023/A:1008922709029
  8. Grauel, A., Ludwig, L.A. and Klene, G. (1997), "Comparison of different intelligent methods for process and quality monitoring", Int. J. Approx. Reason., 16, 89-117. https://doi.org/10.1016/S0888-613X(97)87368-9
  9. Hammami, M.A. (2001), "Global convergence of a control system by means of an observer", J. Optim. Theor. Appl., 108, 377-388. https://doi.org/10.1023/A:1026442402201
  10. Hu, Q. (2008), "Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics", Nonlin. Dyn., 52, 227-248. https://doi.org/10.1007/s11071-007-9274-6
  11. Ignaciuk, P. and Bartoszewicz, A. (2010), "Linear-quadratic optimal control strategy for periodic-review inventory systems", Automatica, 46(12), 1982-1993. https://doi.org/10.1016/j.automatica.2010.09.010
  12. Jankovic, M., Sepulchre, R. and Kokotovic, P.V. (1996), "Constructive Lyapunov stabilisation of nonlinear cascade systems", IEEE Trans. Autom. Control, 41, 1723-1735. https://doi.org/10.1109/9.545712
  13. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department.
  14. Karaboga, D. and Basturk, B. (2008), "On the performance of artificial bee colony (ABC) algorithm", Appl. Soft Comput., 8(1), 687-697. https://doi.org/10.1016/j.asoc.2007.05.007
  15. Kawamoto, S., Tada, K., Onoe, N., Ishigame, A. and Taniguchi, T. (1992), "Construction of exact fuzzy system for nonlinear system and its stability analysis", Proceedings of 8th Fuzzy System Symposium, Hiroshima, Japan.
  16. Kawamoto, S., Tada, K., Ishigame, A. and Taniguchi, T. (1992), "An approach to stability analysis of second order fuzzy systems", Proceedings of IEEE International Conference on Fuzzy Systems, San Diego, CA, 1427-1434.
  17. Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89(23), 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010
  18. Kuo, R.J. and Xue, K.C. (1998), "An intelligent sales forecasting system through integration of artificial neural network and fuzzy neural network", Comput. Indus., 37, 1-15. https://doi.org/10.1016/S0166-3615(98)00066-9
  19. Kuok, S.C. and Yuen, K.V. (2012), "Structural health monitoring of Canton tower using Bayesian framework", Smart Struct. Syst., 10(4-5), 375-391. https://doi.org/10.12989/sss.2012.10.4_5.375
  20. Lam, H.K. (2009), "Stability analysis of T-S fuzzy control systems using parameter-dependent Lyapunov function", IET Control Theor. Appl., 3, 750-762. https://doi.org/10.1049/iet-cta.2008.0196
  21. Lee, H.H. and Juang, H.H. (2012), "Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD", Smart Struct. Syst., 9(1), 71-104. https://doi.org/10.12989/sss.2012.9.1.071
  22. Lee, H.J., Park, J.B. and Chen, G. (2001), "Robust fuzzy control of nonlinear systems with parameter uncertainties", IEEE Trans. Fuzzy Syst., 9, 369-379. https://doi.org/10.1109/91.919258
  23. Lewandowski, R., Bartkowiak, A. and Maciejewski, H. (2012), "Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models", Struct. Eng. Mech., 41(1), 113-137. https://doi.org/10.12989/sem.2012.41.1.113
  24. Lian, S.T., Marzuki, K. and Rubiyah, Y. (1998), "Tuning of a neuro-fuzzy controller by genetic algorithms with an application to a coupled-tank liquid-level control system", Eng. Appl. Artif. Intel., 11, 517-529. https://doi.org/10.1016/S0952-1976(98)00012-8
  25. Liu, S.C. and Lin, S.F. (2012), "LMI-based robust sliding control for mismatched uncertain nonlinear systems using fuzzy models", Int. J. Rob. Nonlin. Control, 22(16), 1827-1836. https://doi.org/10.1002/rnc.1789
  26. Liu, S.C. and Lin, S.F. (2012), "LMI-based robust adaptive control for mismatched uncertain nonlinear time-delay systems using fuzzy models", Proceedings of 2012 International symposium on Computer, Consumer and Control, Taichung, Taiwan, 552-555.
  27. Liu, S.C. and Lin, S.F. (2013), "Robust sliding control for mismatched uncertain fuzzy time-delay systems using linear matrix inequality approach", J. Chin. Inst. Eng., 36(5), 589-597. https://doi.org/10.1080/02533839.2012.734557
  28. Liu, X. and Zhang, Q. (2003), "New approach to H1 controller designs based on fuzzy observers for T-S fuzzy systems via LMI", Automatica, 39, 1571-1582. https://doi.org/10.1016/S0005-1098(03)00172-9
  29. Liu, Y.J. and Li, Y.X. (2010), "Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems", Nonlin. Dyn., 61, 749-761. https://doi.org/10.1007/s11071-010-9684-8
  30. Loria, A. and Nesic, D. (2003), "On uniform boundedness of parametrized discrete-time systems with decaying inputs: applications to cascades", Syst. Control Lett., 94, 163-174.
  31. Ma, X.J. and Sun, Z.Q. (2001), "Analysis and design of fuzzy reduceddimensional observer and fuzzy functional observer", Fuzz. Set. Syst., 120, 35-63. https://doi.org/10.1016/S0165-0114(99)00145-1
  32. Mazenc, F., Sepulchre, R. and Jankovic, M. (1999), "Lyapunov functions for stable cascades and applications to stabilisation", IEEE Trans. Automat. Contr., 44, 1795-1800. https://doi.org/10.1109/9.788556
  33. Narendra, K.G., Khorasani, K. and Sood, V.K. et al. (1998), "Intelligent current controller for an HVDC transmission link", IEEE Tran. Power Syst., 13, 1076-1083. https://doi.org/10.1109/59.709102
  34. Panda, G., Pardhan, P.M. and Majhi, B. (2011), "IIR system identification using cat swarm optimization", Exp. Syst. Appl., 38, 12671-12683. https://doi.org/10.1016/j.eswa.2011.04.054
  35. Panteley, E. and Loria, A. (1998), "On global uniform asymptotic stability of nonlinear time-varying non autonomous systems in cascade", Syst. Control Lett., 33, 131-138. https://doi.org/10.1016/S0167-6911(97)00119-9
  36. Pardhan, P.M. and Panda, G. (2012), "Solving multiobjective problems using cat swarm optimization", Exp. Syst. Appl., 39, 2956-2964. https://doi.org/10.1016/j.eswa.2011.08.157
  37. Park, J., Kim, J. and Park, D. (2003), "LMI-based design of stabilizing fuzzy controllers for nonlinear systems described by Takagi-Sugeno fuzzy model", Fuzz. Set. Syst., 122, 73-82.
  38. Sciortino, J.C. (1997), "Autonomous ESM systems", Nav. Eng. J., 109, 73-84.
  39. Shi, Y. and Fang H. (2010), "Kalman filter-based identification for systems with randomly missing measurements in a network environment", Int. J. Control, 83(3), 538-551. https://doi.org/10.1080/00207170903273987
  40. Seibert, P. and Suarez, R. (1990), "Global stabilisation of nonlinear cascade systems", Syst. Control Lett., 14, 347-352. https://doi.org/10.1016/0167-6911(90)90056-Z
  41. Sepulchre, R. (2000), "Slow peaking and low-gain designs for global stabilisation on nonlinear systems", IEEE Tran. Autom. Control, 45, 453-461. https://doi.org/10.1109/9.847724
  42. Sepulchre, R., Jankovic, M. and Kokotovic, P.V. (1997), Constructive Nonlinear Control, Series in Communications and Control Engineering, Springer, Berlin.
  43. Simoes, M.G., Bose, B.K. and Spiegel, R.J. (1997), "Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system", IEEE Tran. Indus. Appl., 33, 956-965. https://doi.org/10.1109/28.605737
  44. Sontag, E.D. (1989), "Remarks on stabilisation and input-to-state stability", Proceedings of the 28th IEEE Conference on Decision Control, Tampa, FL, 1376-1378.
  45. Sontag, E.D. (1988), "Smooth stabilization implies coprime factorization", IEEE Tran. Automat. Contr., 34, 435-443.
  46. Sontag, E.D. and Wang, Y. (1995), "On characterizations of the inputto-state stability property", Syst. Control Lett., 24, 351-359. https://doi.org/10.1016/0167-6911(94)00050-6
  47. Sun, Q., Li, R. and Zhang, P. (2003), "Stable and optimal adaptive fuzzy control of complex systems using fuzzy dynamic model", Fuzzy Sets Syst., 133, 1-17. https://doi.org/10.1016/S0165-0114(02)00124-0
  48. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Tran. Syst. Man Cybern., 15, 116-132.
  49. Tanaka, K., Ikeda, T. and Wang, H.O. (1996), "Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, $H_{\infty}$ control theory, and linear matrix inequalities", IEEE Tran. Fuzz. Syst., 4, 1-13. https://doi.org/10.1109/91.481840
  50. Tanaka, K. and Sano, M. (1994), "On the concepts of regulator and observer of fuzzy control systems", Third IEEE international Conference on Fuzzy Systems, Orlando, FL, 767-772.
  51. Tsai, P.W., Kham, M.K., Pan, J.S. and Liao, B.Y. (2012), "Interactive artificial bee colony supported passive continuous authentication system", IEEE Syst. J., 8(2), 395-405.. https://doi.org/10.1109/JSYST.2012.2208153
  52. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Vaci, I. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148-149, 134-137.
  53. Tyan, C.Y., Wang, P.P. and Bahler, D.R. (1996), "An application on intelligent control using neural network and fuzzy logic", Neurocomput., 12, 345-363. https://doi.org/10.1016/0925-2312(95)00072-0
  54. Wang, H.O., Tanaka, K. and Griffin, M. (1996), "An approach to fuzzy control of nonlinear systems: stability and design issues", IEEE Tran. Fuzz. Syst., 4, 14-23. https://doi.org/10.1109/91.481841
  55. Wang, Z.H., Chang, C.C., and Li, M.C. (2012), "Optimizing least-significant-bit substitution using cat swarm optimization strategy", Inform. Sci., 192, 98-108. https://doi.org/10.1016/j.ins.2010.07.011
  56. Yen, G.G. (1996), "Health monitoring of vibration signatures in rotorcraft wings", Neur. Proc. Lett., 4, 127-137. https://doi.org/10.1007/BF00426021
  57. Yu, L. and Giurgiutiu, V. (2005), "Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors", Smart Struct. Syst., 1(2), 185-215. https://doi.org/10.12989/sss.2005.1.2.185
  58. Zhu, Y., Zhang, Q., Wei, Z. and Zhang, L. (2013), "Robust stability analysis of Markov jump standard genetic regulatory networks with mixed time delays and uncertainties", Neurocomput., 110(13), 44-50. https://doi.org/10.1016/j.neucom.2012.09.033

Cited by

  1. Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements vol.61, pp.2, 2015, https://doi.org/10.12989/sem.2017.61.2.283
  2. Fuzzy inference systems based prediction of engineering properties of two-stage concrete vol.19, pp.2, 2015, https://doi.org/10.12989/cac.2017.19.2.133
  3. LMI based criterion for reinforced concrete frame structures vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.407
  4. Advanced controller design for AUV based on adaptive dynamic programming vol.5, pp.3, 2015, https://doi.org/10.12989/acd.2020.5.3.233
  5. On the Algorithmic Stability of Optimal Control with Derivative Operators vol.39, pp.12, 2020, https://doi.org/10.1007/s00034-020-01447-1
  6. Modified algorithmic LMI design with applications in aerospace vehicles vol.8, pp.1, 2015, https://doi.org/10.12989/aas.2021.8.1.069
  7. Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
  8. Evolved auxiliary controller with applications to aerospace vol.93, pp.4, 2021, https://doi.org/10.1108/aeat-12-2019-0233
  9. Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2015, https://doi.org/10.12989/sem.2021.79.2.131